Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1994, Volume 213, Pages 164–178 (Mi znsl5913)  

This article is cited in 2 scientific papers (total in 2 papers)

Some remarks on variational problems for functionals with $L\ln L$ growth

G. A. Seregin

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Full-text PDF (422 kB) Citations (2)
Abstract: Regularity for minimizers of the functional $\int_\Omega|\nabla v|\ln(1+|\nabla v|)\,dx$ on a set of vector-valued functions $v\colon\Omega\subset\mathbb R^n\to\mathbb R^n$, taking prescribed values on the boundary $\partial\Omega$, is studied. It is shown that solution of the dual variational problem belong to the class $W^1_{2,\mathrm{loc}}$. In the case $n=2$ a higher integrability for minimizers of the direct variational problem is proved. Bibliography: 5 titles.
Received: 25.07.1993
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 84, Issue 1, Pages 919–929
DOI: https://doi.org/10.1007/BF02399943
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: G. A. Seregin, “Some remarks on variational problems for functionals with $L\ln L$ growth”, Boundary-value problems of mathematical physics and related problems of function theory. Part 25, Zap. Nauchn. Sem. POMI, 213, Nauka, St. Petersburg, 1994, 164–178; J. Math. Sci. (New York), 84:1 (1997), 919–929
Citation in format AMSBIB
\Bibitem{Ser94}
\by G.~A.~Seregin
\paper Some remarks on variational problems for functionals with $L\ln L$ growth
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~25
\serial Zap. Nauchn. Sem. POMI
\yr 1994
\vol 213
\pages 164--178
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5913}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1329316}
\zmath{https://zbmath.org/?q=an:0907.49019}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 84
\issue 1
\pages 919--929
\crossref{https://doi.org/10.1007/BF02399943}
Linking options:
  • https://www.mathnet.ru/eng/znsl5913
  • https://www.mathnet.ru/eng/znsl/v213/p164
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024