Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 249, Pages 256–293 (Mi znsl589)  

This article is cited in 2 scientific papers (total in 2 papers)

On attractors for equations describing the flow of generalized Newtonian fluids

G. A. Seregin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (343 kB) Citations (2)
Abstract: We consider initial-boundary value problems for equations
\begin{gather*} \partial_t v+(\nabla v)v-\operatorname{div}\sigma=g-\nabla p, \quad \operatorname{div}v=0, \\ \sigma=\frac{\partial D}{\partial\varepsilon}(\varepsilon (v)), \quad v\big|_{t=0}=a, \end{gather*}
describing the $2D$ flow of generalized Newtonian fluids under periodical boundary conditions. It is supposed that $D(\varepsilon)\sim|\varepsilon|^p$ for $|\varepsilon|\gg 1$ and $1<p<2$. Under some additional restrictions imposed on the vector-valued field $g$ and the dissipative potential $D$ existence of a global solution for initial data having the finite $L_2$-norm $(\|a\|_2<+\infty$) is proved. If $\|\nabla a\|_2<+\infty$ and $\frac32\le p<2$, this solution is strong and unique. Strong solution exists and is unique for all $1<p<2$. The last result allows to define a semigroup of solution operators and to prove that it is of class I and possesses of a compact minimal global $\mathscr B$-attractor.
Received: 07.04.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 101, Issue 5, Pages 3539–3562
DOI: https://doi.org/10.1007/BF02680151
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: G. A. Seregin, “On attractors for equations describing the flow of generalized Newtonian fluids”, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Zap. Nauchn. Sem. POMI, 249, POMI, St. Petersburg, 1997, 256–293; J. Math. Sci. (New York), 101:5 (2000), 3539–3562
Citation in format AMSBIB
\Bibitem{Ser97}
\by G.~A.~Seregin
\paper On attractors for equations describing the flow of generalized Newtonian fluids
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 249
\pages 256--293
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1698522}
\zmath{https://zbmath.org/?q=an:0961.35019}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 101
\issue 5
\pages 3539--3562
\crossref{https://doi.org/10.1007/BF02680151}
Linking options:
  • https://www.mathnet.ru/eng/znsl589
  • https://www.mathnet.ru/eng/znsl/v249/p256
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024