Abstract:
A new local version of the Ladyzhenskaya–Prodi–Serrin regularity condition for weak solutions of the nonstationary 3-dimensional Navier-Stokes system is proved. The novelty is in that the energy of the solution is not assumed to be finite.
Citation:
G. A. Seregin, “New version of the Ladyzhenskaya–Prodi–Serrin condition”, Algebra i Analiz, 18:1 (2006), 124–143; St. Petersburg Math. J., 18:1 (2007), 89–103
\Bibitem{Ser06}
\by G.~A.~Seregin
\paper New version of the Ladyzhenskaya--Prodi--Serrin condition
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 1
\pages 124--143
\mathnet{http://mi.mathnet.ru/aa62}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225215}
\zmath{https://zbmath.org/?q=an:1129.35060}
\elib{https://elibrary.ru/item.asp?id=9212601}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 1
\pages 89--103
\crossref{https://doi.org/10.1090/S1061-0022-06-00944-7}
Linking options:
https://www.mathnet.ru/eng/aa62
https://www.mathnet.ru/eng/aa/v18/i1/p124
This publication is cited in the following 10 articles:
Barker T., Prange Ch., “Quantitative Regularity For the Navier-Stokes Equations Via Spatial Concentration”, Commun. Math. Phys., 385:2 (2021), 717–792
Barker T., Prange Ch., “Localized Smoothing For the Navier-Stokes Equations and Concentration of Critical Norms Near Singularities”, Arch. Ration. Mech. Anal., 236:3 (2020), 1487–1541
Barker T. Prange Ch., “Scale-Invariant Estimates and Vorticity Alignment For Navier-Stokes in the Half-Space With No-Slip Boundary Conditions”, Arch. Ration. Mech. Anal., 235:2 (2020), 881–926
Neustupa J., Necasova S., Kucera P., “A Pressure Associated With a Weak Solution to the Navier-Stokes Equations With Navier'S Boundary Conditions”, J. Math. Fluid Mech., 22:3 (2020), 37
Gregory Seregin, Vladimir Šverák, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 829
Gregory Seregin, Vladimir Šverák, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016, 1
Choi K., Vasseur A.F., “Estimates on Fractional Higher Derivatives of Weak Solutions For the Navier–Stokes Equations”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 31:5 (2014), 899–945
Chen X., Gala S., “Remarks on logarithmically regularity criteria for the 3D viscous MHD equations”, J. Korean Math. Soc., 48:3 (2011), 465–474
Seregin G., Zajaczkowski W., “A sufficient condition of regularity for axially symmetric solutions to the Navier–Stokes equations”, SIAM J. Math. Anal., 39:2 (2007), 669–685 (electronic)