Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1991, Volume 188, Pages 128–142 (Mi znsl4873)  

This article is cited in 17 scientific papers (total in 17 papers)

On the dynamical system associated with two dimensional equations of the motion of Bingham fluid

G. A. Seregin
Abstract: In this paper we study solvability, uniqueness and regularity of the solution of the evolutional variational inequality arising in the theory of the motion of two dimensional Bingham fluid. Under some conditions it is proved that family of resolving operators is the semigroup which has the minimal global $B$-attractor $\mathfrak{M}_\lambda$. It is shown that for some values of the parameter $\lambda$ the structure of the attractor $\mathfrak{M}_\lambda$ is trivial. Some estimate of the dimension of the attractor $\mathfrak{M}_\lambda$ is given.
English version:
Journal of Mathematical Sciences, 1994, Volume 70, Issue 3, Pages 1806–1816
DOI: https://doi.org/10.1007/BF02149150
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: G. A. Seregin, “On the dynamical system associated with two dimensional equations of the motion of Bingham fluid”, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Zap. Nauchn. Sem. LOMI, 188, Nauka, St. Petersburg, 1991, 128–142; J. Math. Sci., 70:3 (1994), 1806–1816
Citation in format AMSBIB
\Bibitem{Ser91}
\by G.~A.~Seregin
\paper On the dynamical system associated with two dimensional equations of the motion of Bingham fluid
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~22
\serial Zap. Nauchn. Sem. LOMI
\yr 1991
\vol 188
\pages 128--142
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4873}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1111472}
\zmath{https://zbmath.org/?q=an:0835.76001|0747.76015}
\transl
\jour J. Math. Sci.
\yr 1994
\vol 70
\issue 3
\pages 1806--1816
\crossref{https://doi.org/10.1007/BF02149150}
Linking options:
  • https://www.mathnet.ru/eng/znsl4873
  • https://www.mathnet.ru/eng/znsl/v188/p128
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024