Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2007, Volume 62, Issue 3, Pages 595–614
DOI: https://doi.org/10.1070/RM2007v062n03ABEH004415
(Mi rm6117)
 

This article is cited in 29 scientific papers (total in 29 papers)

Local regularity for suitable weak solutions of the Navier–Stokes equations

G. A. Seregin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: A class of conditions sufficient for local regularity of suitable weak solutions of the non-stationary three-dimensional Navier–Stokes equations is discussed. The corresponding results are formulated in terms of functionals invariant with respect to the scaling of the Navier–Stokes equations. The well-known Caffarelli–Kohn–Nirenberg condition is contained in the class as a particular case.
Received: 30.09.2006
Russian version:
Uspekhi Matematicheskikh Nauk, 2007, Volume 62, Issue 3(375), Pages 149–168
DOI: https://doi.org/10.4213/rm6117
Bibliographic databases:
Document Type: Article
UDC: 517
MSC: Primary 35Q30; Secondary 35D10, 76D03, 76D05
Language: English
Original paper language: Russian
Citation: G. A. Seregin, “Local regularity for suitable weak solutions of the Navier–Stokes equations”, Uspekhi Mat. Nauk, 62:3(375) (2007), 149–168; Russian Math. Surveys, 62:3 (2007), 595–614
Citation in format AMSBIB
\Bibitem{Ser07}
\by G.~A.~Seregin
\paper Local regularity for suitable weak solutions of the Navier--Stokes equations
\jour Uspekhi Mat. Nauk
\yr 2007
\vol 62
\issue 3(375)
\pages 149--168
\mathnet{http://mi.mathnet.ru/rm6117}
\crossref{https://doi.org/10.4213/rm6117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355422}
\zmath{https://zbmath.org/?q=an:1139.76018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62..595S}
\elib{https://elibrary.ru/item.asp?id=25787402}
\transl
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 3
\pages 595--614
\crossref{https://doi.org/10.1070/RM2007v062n03ABEH004415}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250483500009}
\elib{https://elibrary.ru/item.asp?id=13534133}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35648958859}
Linking options:
  • https://www.mathnet.ru/eng/rm6117
  • https://doi.org/10.1070/RM2007v062n03ABEH004415
  • https://www.mathnet.ru/eng/rm/v62/i3/p149
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:762
    Russian version PDF:310
    English version PDF:17
    References:102
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024