Some basic problems related to closed graph theorems and, in general, to homological properties of locally convex spaces, which attracted the experts at the beginning of 70-th, were solved. Those problems tracing back to Dieudonne, L. Schwartz, Grothendieck, Koethe, Ptak, Kelley, Raikov were already 15–20 years old that time. In particular it has been constructed a quotient of the space $D(R)$ which is isomorphic to a proper dense subspace of $R^\infty$ (and hence non-complete and metrizable). It has been also shown that the Pontryagin duality between the spaces $D(R)$ and $D'(R)$ can not be extended to their subspaces and quotients. In solving all of those problems a method of effective constructing, in locally convex spaces, some sequentially closed non-closed subsets of different types (countable, convex, vector subspaces etc.) has been derived. This method has also an independent interest and has been used to solve some other problems, for example to construct infinitely differentiable discontinuous functions on locally convex spaces (M. O. Smolyanova). Besides by this method it has been possible to solve, using some properties of spaces $D(R)$ and $D'(R)$, five of twelve problems posed in the famous paper of Dieudonne and L. Schwartz. By that time those problems have been already solved by Grothendieck who needed, without this method, to construct for that purpose some special locally convex spaces. It has been proved (together with A. V. Uglanov) that the Wiener measure does not have any Hilbert support; this statement refutes a conjecture of F. A. Berezin according to which the $\sigma$-additivity of the Wiener measure can be deduced from the Minlos–Sazonov theorem. It has been shown (together with E. T. Shavgulidze) that the Hamiltonian Feynman measure (on the set of paths in the phase space) can be considered as an analytical continuation of a Gaussian measure; this statement refutes another Berezin's conjecture. Some infinite dimensional pseudodifferential operators with $pq$- and $qp$-symbols have been defined and (together with A. Yu. Khrennikov) an algebra of such operators have been constructed; by this way one more Berezin's problem have been solved. A theory of smooth functions and (together with S. V. Fomin) a theory of smooth measures on infinite dimensional spaces have been developed. It has been shown (together with J. Kupsch) that there does not exist any Hilbert norm on a tensor algebra (including the Grassman algebra) that satisfies the estimate $\|xy\|\le c\|x\|\|y\|$ with the constant $c=1$ but such a norm has been constructed for $c=\sqrt{3}$; this means that a problem tracing back to B. deWitt is solved. Some representations of solutions for stochastic Schroedinger–Belavkin equations by Feynman path integrals are obtained (together with S. Albeverio, V. M. Kolokol'tsov, A. Truman). It is proved (together with M. O. Smolyanova) a Prigogine's conjecture about irreducibility of Liouvillian dynamics to Hamiltonian dynamics. Some connections between Levy Laplacians and (quantum) stochastic processes are described (together with L. Accardi). Surface measures on trajectories in Riemannian submanifolds of Euclidian spaces (and Riemannian manifolds) generated by measures on trajectories in enveloping spaces are introduced and (together with H. v. Weizsaecker) their properties are investigated. In particular it is shown that in the case of the Wiener measure on trajectories in the enveloping manifold the corresponding surface measure is equivalent to the Wiener measure on trajectories in the submanifolds and the corresponding density is calculated. Some Feynman and Feynman–Kac formulas for solutions of Schroedinger equations on Riemannian manifolds (including stochastic equations) are obtained (together with A. Truman); by this way some problems tracing back to C. deWitt-Morett and D. Elworthy are solved.
Biography
A scientific biography and some additional information can be found in the paper published in the Moscow State University Mathematical Bulletin, 1998, no. 5 (in Russian).
Main publications:
Kupsch J., Smolyanov O. G. Functional representations for Fock superalgebras // Infinite Dimensional Analysis, Quantum Probability and Related Topics, v. 1, no. 2, 1998, 285–324.
Smolyanov O. G., Weizsaecker H. v., Wittich O. Brownian motion on a manifiold as limit of stepwise conditioned standard Brownian motions // Canadian Mathematical Society Conference Proceedings, v. 29, 2000, 589–602.
V. V. Kozlov, O. G. Smolyanov, “Поправка к статье “Математические структуры, связанные с описанием квантовых состояний”, 2021, том 501, с. 57–61”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 106
2022
2.
N. A. Volkov, D. I. Dmitriev, M. E. Zhukovskii, J. Gough, Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, I. I. Bogdanov, O. R. Grigoryan, V. A. Alekseev, Yu. G. Smetanin, M. G. Amaglobeli, A. G. Myasnikov, V. N. Remeslennikov, “Erratum to: Several Articles in Doklady Mathematics”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 402–403; Dokl. Math., 106:2 (2022), 402–403
3.
J. E. Gough, Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Markov approximations of the evolution of quantum systems”, Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022), 48–53; Dokl. Math., 105:2 (2022), 92–96
V. V. Kozlov, O. G. Smolyanov, “Mathematical structures related to the description of quantum states”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 57–61; Dokl. Math., 104:3 (2021), 365–368
J. E. Gough, Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Random quantization of Hamiltonian systems”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 31–36; Dokl. Math., 103:3 (2021), 122–126
J. E. Gough, T. S. Ratiu, O. G. Smolyanov, “Wigner Measures and Coherent Quantum Control”, Trudy Mat. Inst. Steklova, 313 (2021), 59–66; Proc. Steklov Inst. Math., 313 (2021), 52–59
2020
8.
O. G. Smolyanov, N. N. Shamarov, “Schrödinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 65–69; Dokl. Math., 101:3 (2020), 227–230
John E. Gough, Tudor S. Ratiu, Oleg G. Smolyanov, “Quantum Anomalies via Differential Properties of Lebesgue–Feynman Generalized Measures”, Trudy Mat. Inst. Steklova, 310 (2020), 107–118; Proc. Steklov Inst. Math., 310 (2020), 98–107
K. Yu. Zamana, V. Zh. Sakbaev, O. G. Smolyanov, “Stochastic processes on the group of orthogonal matrices and evolution equations describing them”, Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020), 1741–1756; Comput. Math. Math. Phys., 60:10 (2020), 1686–1700
Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups”, Trudy Mat. Inst. Steklova, 306 (2019), 210–226; Proc. Steklov Inst. Math., 306 (2019), 196–211
V. V. Kozlov, O. G. Smolyanov, “Hamiltonian approach to secondary quantization”, Dokl. Akad. Nauk, 483:2 (2018), 138–142; Dokl. Math., 98:3 (2018), 571–574
V. V. Kozlov, O. G. Smolyanov, “Two Theorems on Isomorphisms of Measure Spaces”, Mat. Zametki, 104:5 (2018), 781–784; Math. Notes, 104:5 (2018), 758–761
V. Zh. Sakbaev, O. G. Smolyanov, “Feynman calculus for random operator-valued functions and their applications”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:2 (2018), 373–383
Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. RAN. Ser. Mat., 80:6 (2016), 141–172; Izv. Math., 80:6 (2016), 1131–1158
V. V. Kozlov, O. G. Smolyanov, “Invariant and quasi-invariant measures on infinite-dimensional spaces”, Dokl. Akad. Nauk, 465:5 (2015), 527–531; Dokl. Math., 92:3 (2015), 743–746
Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Trudy Mat. Inst. Steklova, 285 (2014), 232–243; Proc. Steklov Inst. Math., 285 (2014), 222–232
G. G. Amosov, V. Zh. Sakbaev, O. G. Smolyanov, “Linear and nonlinear liftings of states of quantum systems”, Russ. J. Math. Phys., 19:4 (2012), 417–427
Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian”, TMF, 172:1 (2012), 122–137; Theoret. and Math. Phys., 172:1 (2012), 987–1000
O. G. Smolyanov, N. N. Shamarov, “Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator”, Trudy Mat. Inst. Steklova, 265 (2009), 229–240; Proc. Steklov Inst. Math., 265 (2009), 217–228
O. G. Smolyanov, N. N. Shamarov, “Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 4, 16–22
V. V. Kozlov, O. G. Smolyanov, “Weak convergence of states in quantum statistical mechanics”, Dokl. Akad. Nauk, 417:2 (2007), 180–184; Dokl. Math., 76:3 (2007), 958–961
V. V. Kozlov, O. G. Smolyanov, “Information entropy in problems of classical and quantum statistical mechanics”, Dokl. Akad. Nauk, 411:5 (2006), 587–590; Dokl. Math., 74:3 (2006), 910–913
J. Kupsch, O. G. Smolyanov, “Exact master equations describing reduced dynamics of the Wigner function”, Fundam. Prikl. Mat., 12:5 (2006), 203–219; J. Math. Sci., 150:6 (2008), 2598–2608
V. V. Kozlov, O. G. Smolyanov, “Wigner function and diffusion in collisionfree media of quantum particles”, Teor. Veroyatnost. i Primenen., 51:1 (2006), 109–125; Theory Probab. Appl., 51:1 (2007), 168–181
J. E. Gough, O. O. Obrezkov, O. G. Smolyanov, “Randomized Hamiltonian Feynman integrals and Shrödinger–Itô stochastic equations”, Izv. RAN. Ser. Mat., 69:6 (2005), 3–20; Izv. Math., 69:6 (2005), 1081–1098
O. G. Smolyanov, S. A. Shkarin, “Gateaux complex differentiability and continuity”, Izv. RAN. Ser. Mat., 68:6 (2004), 157–168; Izv. Math., 68:6 (2004), 1217–1227
O. G. Smolyanov, J. Kupsch, “Asymptotic Decoherence in Infinite-Dimensional Quantum Systems with Quadratic Hamiltonians”, Mat. Zametki, 73:1 (2003), 143–148; Math. Notes, 73:1 (2003), 136–141
O. G. Smolyanov, S. A. Shkarin, “Structure of spectra of linear operators in Banach spaces”, Mat. Sb., 192:4 (2001), 99–114; Sb. Math., 192:4 (2001), 577–591
O. G. Smolyanov, A. Trumen, “Feynman Formulas for Solutions of the Schrödinger Equation on Compact Riemannian Manifolds”, Mat. Zametki, 68:5 (2000), 789–793; Math. Notes, 68:5 (2000), 668–671
O. G. Smolyanov, J. Kupsch, “Bogolyubov transformations in Wiener–Segal–Fock space”, Mat. Zametki, 68:3 (2000), 474–479; Math. Notes, 68:3 (2000), 409–414
O. G. Smolyanov, A. Trumen, “Schrödinger–Belavkin equations and associated Kolmogorov and Lindblad equations”, TMF, 120:2 (1999), 193–207; Theoret. and Math. Phys., 120:2 (1999), 973–984
O. G. Smolyanov, A. Trumen, “Change of variable formulas for Feynman pseudomeasures”, TMF, 119:3 (1999), 355–367; Theoret. and Math. Phys., 119:3 (1999), 677–686
O. G. Smolyanov, L. Accardi, “Extensions of spaces with cylindrical measures and supports of measures determined by the Lévy Laplacian”, Mat. Zametki, 64:4 (1998), 483–492; Math. Notes, 64:4 (1998), 421–428
O. G. Smolyanov, “Stochastic Schrödinger–Belavkin equation and the corresponding equations of Kolmogorov and Lindblad”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 4, 19–24
1997
42.
N. V. Norin, O. G. Smolyanov, “Logarithmic derivatives of measures, and Gibbs distributions”, Dokl. Akad. Nauk, 354:4 (1997), 456–460
43.
S. A. Albeverio, O. G. Smolyanov, “Infinite-dimensional stochastic Schrödinger–Belavkin equations”, Uspekhi Mat. Nauk, 52:4(316) (1997), 197–198; Russian Math. Surveys, 52:4 (1997), 822–823
O. G. Smolyanov, “Differentiable measures on current groups”, Trudy Mat. Inst. Steklova, 217 (1997), 182–188; Proc. Steklov Inst. Math., 217 (1997), 174–180
1996
45.
L. Accardi, O. G. Smolyanov, “Transformations of Gaussian measures generated by the Lévy–Laplacian, and generalized traces”, Dokl. Akad. Nauk, 350:1 (1996), 5–8
46.
J. Kupsch, O. G. Smolyanov, “Models of the symmetric Fock algebra”, Mat. Zametki, 60:6 (1996), 939–942; Math. Notes, 60:6 (1996), 710–713
L. Accardi, O. G. Smolyanov, M. O. Smolyanova, “Change of variable formulas for infinite-dimensional distributions”, Mat. Zametki, 60:2 (1996), 288–292; Math. Notes, 60:2 (1996), 212–215
H. von Weizsäcker, O. G. Smolyanov, “Formulae with logarithmic derivatives of measures related to the quantization of infinite-dimensional Hamiltonian systems”, Uspekhi Mat. Nauk, 51:2(308) (1996), 149–150; Russian Math. Surveys, 51:2 (1996), 357–358
L. Accardi, O. G. Smolyanov, “A Gaussian process generated by the Lévy Laplacian, and the
corresponding Feynman–Kac formula”, Dokl. Akad. Nauk, 342:4 (1995), 442–445
Kh. von Weizsäcker, O. G. Smolyanov, “Smooth curves in spaces of measures, and shifts of differentiable
measures along vector fields”, Dokl. Akad. Nauk, 339:5 (1994), 584–587; Dokl. Math., 50:3 (1995), 476–481
52.
O. G. Smolyanov, M. O. Smolyanova, “The Feynman integral and nonlinear transformations of a phase
space”, Dokl. Akad. Nauk, 336:1 (1994), 29–32; Dokl. Math., 49:3 (1994), 465–470
S. G. Lobanov, O. G. Smolyanov, “Ordinary differential equations in locally convex spaces”, Uspekhi Mat. Nauk, 49:3(297) (1994), 93–168; Russian Math. Surveys, 49:3 (1994), 97–175
O. G. Smolyanov, M. O. Smolyanova, “Transformations of Feynman integral under some nonlinear transformations of the phase space”, TMF, 100:1 (1994), 3–13; Theoret. and Math. Phys., 100:1 (1994), 803–810
O. G. Smolyanov, “The Holmgren theorem for stochastic differential equations”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 1, 54–59
1993
56.
N. V. Norin, O. G. Smolyanov, “Some results on logarithmic derivatives of measures on a locally convex space”, Mat. Zametki, 54:6 (1993), 135–138; Math. Notes, 54:6 (1993), 1277–1279
L. Accardi, P. Rozelli, O. G. Smolyanov, “Brownian motion generated by the Levy Laplacian”, Mat. Zametki, 54:5 (1993), 144–148; Math. Notes, 54:5 (1993), 1174–1177
O. G. Smolyanov, E. T. Shavgulidze, “The support of a symplectic Feynman measure and the uncertainty
principle”, Dokl. Akad. Nauk, 323:6 (1992), 1038–1042; Dokl. Math., 45:2 (1992), 492–496
59.
O. G. Smolyanov, M. O. Smolyanova, “Shifts of Feynman measure along vector fields”, Mat. Zametki, 52:3 (1992), 154–156; Math. Notes, 52:3 (1992), 990–992
O. G. Smolyanov, E. T. Shavgulidze, “A Simple Proof of Tarieladze's Theorem on Sufficiency of Positively Sufficient Topologies”, Teor. Veroyatnost. i Primenen., 37:2 (1992), 421–424; Theory Probab. Appl., 37:2 (1993), 402–404
V. I. Bogachev, O. G. Smolyanov, “Analytic properties of infinite-dimensional distributions”, Uspekhi Mat. Nauk, 45:3(273) (1990), 3–83; Russian Math. Surveys, 45:3 (1990), 1–104
O. G. Smolyanov, E. T. Shavgulidze, “Representation of the solutions of second-order linear evolution
superdifferential equations by path integrals”, Dokl. Akad. Nauk SSSR, 309:3 (1989), 545–550; Dokl. Math., 40:3 (1990), 552–557
O. G. Smolyanov, E. T. Shavgulidze, “The Fourier transform and pseudodifferential operators in
superanalysis”, Dokl. Akad. Nauk SSSR, 299:4 (1988), 816–820; Dokl. Math., 37:2 (1988), 476–481
O. G. Smolyanov, A. Yu. Khrennikov, “The central limit theorem for generalized measures on
infinite-dimensional spaces”, Dokl. Akad. Nauk SSSR, 281:2 (1985), 279–283
Yu. L. Daleckiĭ, O. G. Smoljanov, “On the weak sequential completeness of the spaces of Radon measures”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 141–147; Theory Probab. Appl., 29:1 (1985), 142–147
O. G. Smolyanov, “A method of proof of the uniqueness theorem for evolutionary differential equations”, Mat. Zametki, 25:2 (1979), 259–269; Math. Notes, 25:2 (1979), 135–140
O. G. Smolyanov, S. V. Fomin, “Measures on linear topological spaces”, Uspekhi Mat. Nauk, 31:4(190) (1976), 3–56; Russian Math. Surveys, 31:4 (1976), 1–53
O. G. Smolyanov, “Almost closed subsets of countable products of locally convex spaces”, Tr. Mosk. Mat. Obs., 32 (1975), 61–76
76.
O. G. Smolyanov, “The class of spaces in which the theorem on the bounded differentiability of the inverse mapping is valid”, Mat. Zametki, 17:5 (1975), 703–709; Math. Notes, 17:5 (1975), 418–421
O. G. Smolyanov, “The size of the classes of hypercomplete spaces and spaces that satisfy the
Kreĭn–Šmul'jan condition”, Uspekhi Mat. Nauk, 30:1(181) (1975), 259–260
O. G. Smolyanov, “Certain complete spaces of smooth mappings of pseudotopological linear spaces”, Uspekhi Mat. Nauk, 29:4(178) (1974), 181–182
1973
79.
O. G. Smolyanov, “Sequentially closed subsets of products of locally convex spaces”, Funktsional. Anal. i Prilozhen., 7:1 (1973), 88–89; Funct. Anal. Appl., 7:1 (1973), 80–81
O. G. Smolyanov, A. V. Uglanov, “Every Hilbert subspace of a Wiener space has measure zero”, Mat. Zametki, 14:3 (1973), 369–374; Math. Notes, 14:3 (1973), 772–774
V. I. Averbukh, O. G. Smolyanov, S. V. Fomin, “Generalized functions and differential equations in linear spaces. II. Differential operators and their Fourier transforms”, Tr. Mosk. Mat. Obs., 27 (1972), 249–262
O. G. Smolyanov, “The space $D$ is not hereditarily complete”, Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971), 682–696; Math. USSR-Izv., 5:3 (1971), 696–710
V. I. Averbukh, O. G. Smolyanov, S. V. Fomin, “Generalized functions and differential equations in linear spaces. I. Differentiable measures”, Tr. Mosk. Mat. Obs., 24 (1971), 133–174
O. G. Smolyanov, “Measurable linear manifolds in products of linear spaces with measure”, Mat. Zametki, 5:5 (1969), 623–634; Math. Notes, 5:5 (1969), 374–379
O. G. Smolyanov, “Almost closed linear subspaces of strict inductive limits of sequences of Fréchet spaces”, Mat. Sb. (N.S.), 80(122):4(12) (1969), 513–520; Math. USSR-Sb., 9:4 (1969), 479–485
V. I. Averbukh, O. G. Smolyanov, “The various definitions of the derivative in linear topological spaces”, Uspekhi Mat. Nauk, 23:4(142) (1968), 67–116; Russian Math. Surveys, 23:4 (1968), 67–113
V. I. Averbukh, O. G. Smolyanov, “The theory of differentiation in linear topological spaces”, Uspekhi Mat. Nauk, 22:6(138) (1967), 201–260; Russian Math. Surveys, 22:6 (1967), 201–258
P. A. Borodin, I. A. Ibragimov, B. S. Kashin, V. V. Kozlov, A. V. Kolesnikov, S. V. Konyagin, E. D. Kosov, O. G. Smolyanov, N. A. Tolmachev, D. V. Treshchev, A. V. Shaposhnikov, S. V. Shaposhnikov, A. N. Shiryaev, A. A. Shkalikov, “Vladimir Igorevich Bogachev (on his 60th birthday)”, Uspekhi Mat. Nauk, 76:6(462) (2021), 201–208; Russian Math. Surveys, 76:6 (2021), 1149–1157
1976
95.
P. S. Aleksandrov, I. M. Gel'fand, A. N. Kolmogorov, E. V. Maikov, V. P. Maslov, O. A. Oleinik, Ya. G. Sinai, O. G. Smolyanov, V. M. Tikhomirov, “In memory of Sergei Vasil'evich Fomin”, Uspekhi Mat. Nauk, 31:4(190) (1976), 199–212; Russian Math. Surveys, 31:4 (1976), 205–220
V. I. Averbukh, O. G. Smolyanov, “An addendum to the article: “Different definitions of derivative in linear topological spaces””, Uspekhi Mat. Nauk, 23:5(143) (1968), 223–224
Functional integrals and quantum anomalies O. G. Smolyanov International Youth Workshop "Mathematical Methods in the Problems of Quantum Technologies" December 7, 2021 14:00
Quantum field theory and anomalies O. G. Smolyanov International Conference "Selected Topics in Mathematical Physics" Dedicated to 75-th Anniversary of I. V. Volovich September 29, 2021 15:55
Гамильтоново вторичное квантование O. G. Smolyanov, N. N. Shamarov Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov September 13, 2019 18:30
Формулы Фейнмана и Фейнмана-Каца и их применения O. G. Smolyanov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) November 27, 2013 18:30