Abstract:
We address the problem concerning the origin of quantum anomalies, which has been the source of disagreement in the literature. Our approach is novel as it is based on the differentiability properties of families of generalized measures. To this end, we introduce a space of test functions over a locally convex topological vector space, and define the concept of logarithmic derivatives of the corresponding generalized measures. In particular, we show that quantum anomalies are readily understood in terms of the differential properties of the Lebesgue–Feynman generalized measures (equivalently, of the Feynman path integrals). We formulate a precise definition for quantum anomalies in these terms.
T. S. Ratiu was partially supported by the National Natural Science Foundation of China (grant no. 11871334) and the NCCR SwissMAP grant of the Swiss National Science Foundation. O. G. Smolyanov was supported by the Lomonosov Moscow State University (grant “Fundamental problems of mathematics and mechanics”) and by the Moscow Institute of Physics and Technology within the Russian Academic Excellence Project “5-100.”
Citation:
John E. Gough, Tudor S. Ratiu, Oleg G. Smolyanov, “Quantum Anomalies via Differential Properties of Lebesgue–Feynman Generalized Measures”, Selected issues of mathematics and mechanics, Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov, Trudy Mat. Inst. Steklova, 310, Steklov Math. Inst., Moscow, 2020, 107–118; Proc. Steklov Inst. Math., 310 (2020), 98–107