Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 498, Pages 31–36
DOI: https://doi.org/10.31857/S2686954321030085
(Mi danma16)
 

This article is cited in 14 scientific papers (total in 14 papers)

MATHEMATICS

Random quantization of Hamiltonian systems

J. E. Gougha, Yu. N. Orlovbc, V. Zh. Sakbaevbd, O. G. Smolyanove

a Aberystwyth University, United Kingdom, Wales
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russian Federation
c Institute of Machines Science named after A.A. Blagonravov of the Russian Academy of Sciences, Moscow, Russian Federation
d Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
e Lomonosov Moscow State University, Moscow, Russian Federation
References:
Abstract: A quantization of a Hamiltonian system is an ambiguous procedure. Accordingly, we introduce the notion of random quantization, related random variables with values in the set of self-adjoint operators, and random processes with values in the group of unitary operators. The procedures for the averaging of random unitary groups and averaging of random self-adjoint operators are defined. The generalized weak convergence of a sequence of measures and the corresponding generalized convergence in distribution of a sequence of random variables are introduced. The generalized convergence in distribution for some sequences of compositions of random mappings is obtained. In the case of a sequence of compositions of shifts by independent random vectors of Euclidean space, the obtained convergence coincides with the statement of the central limit theorem for a sum of independent random vectors. The results are applied to the dynamics of quantum systems arising in random quantization of a Hamiltonian system.
Keywords: random linear operator, random operator-valued function, operator-valued random process, law of large numbers, central limit theorem, Markovian process, Kolmogorov equation.
Funding agency Grant number
Agence Nationale de la Recherche ANR-19-CE48-0003
John Gough acknowledges funding by the French National Research Agency under the grant Q-COAST ANR-19-CE48-0003.
Presented: V. V. Kozlov
Received: 19.02.2021
Revised: 05.04.2021
Accepted: 05.04.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 3, Pages 122–126
DOI: https://doi.org/10.1134/S106456242103008X
Bibliographic databases:
Document Type: Article
UDC: 517.972
Language: Russian
Citation: J. E. Gough, Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Random quantization of Hamiltonian systems”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 31–36; Dokl. Math., 103:3 (2021), 122–126
Citation in format AMSBIB
\Bibitem{GouOrlSak21}
\by J.~E.~Gough, Yu.~N.~Orlov, V.~Zh.~Sakbaev, O.~G.~Smolyanov
\paper Random quantization of Hamiltonian systems
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 498
\pages 31--36
\mathnet{http://mi.mathnet.ru/danma16}
\crossref{https://doi.org/10.31857/S2686954321030085}
\zmath{https://zbmath.org/?q=an:7424714}
\elib{https://elibrary.ru/item.asp?id=46153886}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 3
\pages 122--126
\crossref{https://doi.org/10.1134/S106456242103008X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114039970}
Linking options:
  • https://www.mathnet.ru/eng/danma16
  • https://www.mathnet.ru/eng/danma/v498/p31
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :27
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024