Abstract:
We obtain Feynman formulas in the momentum space and Feynman–Kac formulas in the momentum and phase spaces for a p-adic analog of the heat equation in which the role of the Laplace operator is played by the Vladimirov operator. We also present the Feynman and Feynman–Kac formulas in the configuration space that have been proved in our previous papers under additional constraints. In all these formulas, integration is performed with respect to countably additive measures. The technique developed in the paper is fundamentally different from that used by the authors when studying path integrals in configuration spaces. In particular, the paper extensively uses the infinite-dimensional Fourier transform.
Citation:
O. G. Smolyanov, N. N. Shamarov, “Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator”, Selected topics of mathematical physics and p-adic analysis, Collected papers, Trudy Mat. Inst. Steklova, 265, MAIK Nauka/Interperiodica, Moscow, 2009, 229–240; Proc. Steklov Inst. Math., 265 (2009), 217–228
\Bibitem{SmoSha09}
\by O.~G.~Smolyanov, N.~N.~Shamarov
\paper Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator
\inbook Selected topics of mathematical physics and $p$-adic analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 265
\pages 229--240
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2599557}
\zmath{https://zbmath.org/?q=an:1180.81069}
\elib{https://elibrary.ru/item.asp?id=12601464}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 265
\pages 217--228
\crossref{https://doi.org/10.1134/S0081543809020205}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268514300020}
\elib{https://elibrary.ru/item.asp?id=15307824}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350065700}
Linking options:
https://www.mathnet.ru/eng/tm837
https://www.mathnet.ru/eng/tm/v265/p229
This publication is cited in the following 9 articles:
E. A. Kurianovich, A. I. Mikhailov, I. V. Volovich, “On the theory of relativistic Brownian motion”, P-Adic Numbers Ultrametric Anal. Appl., 16:2 (2024), 113–127
Yana A. Butko, Springer Proceedings in Mathematics & Statistics, 325, Semigroups of Operators – Theory and Applications, 2020, 19
Remizov I.D., “Solution-Giving Formula to Cauchy Problem For Multidimensional Parabolic Equation With Variable Coefficients”, J. Math. Phys., 60:7 (2019), 071505
Remizov I.D., “Approximations to the Solution of Cauchy Problem For a Linear Evolution Equation Via the Space Shift Operator (Second-Order Equation Example)”, Appl. Math. Comput., 328 (2018), 243–246
Butko Ya.A., “Chernoff Approximation For Semigroups Generated By Killed Feller Processes and Feynman Formulae For Time-Fractional Fokker-Planck-Kolmogorov Equations”, Fract. Calc. Appl. Anal., 21:5 (2018), 1203–1237
A. Kh. Bikulov, A. P. Zubarev, “Complete systems of eigenfunctions of the Vladimirov operator in L2(Br) and L2(Qp)”, J. Math. Sci., 237:3 (2019), 362–374
N. N. Shamarov, “Funktsionalnyi operator Laplassa na p-adicheskom prostranstve i formuly Feinmana i Feinmana–Katsa”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2(23) (2011), 251–259
Smolyanov O.G., Shamarov N.N., “Hamiltonian Feynman formulas for equations containing the vladimirov operator with variable coefficients”, Dokl. Math., 84:2 (2011), 689–694
Smolyanov O.G., Shamarov N.N., Kpekpassi M., “Feynman-Kac and Feynman formulas for infinite-dimensional equations with Vladimirov operator”, Dokl. Math., 83:3 (2011), 389–393