Processing math: 100%
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 265, Pages 229–240 (Mi tm837)  

This article is cited in 9 scientific papers (total in 9 papers)

Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator

O. G. Smolyanov, N. N. Shamarov

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
Full-text PDF (246 kB) Citations (9)
References:
Abstract: We obtain Feynman formulas in the momentum space and Feynman–Kac formulas in the momentum and phase spaces for a p-adic analog of the heat equation in which the role of the Laplace operator is played by the Vladimirov operator. We also present the Feynman and Feynman–Kac formulas in the configuration space that have been proved in our previous papers under additional constraints. In all these formulas, integration is performed with respect to countably additive measures. The technique developed in the paper is fundamentally different from that used by the authors when studying path integrals in configuration spaces. In particular, the paper extensively uses the infinite-dimensional Fourier transform.
Received in October 2008
English version:
Proceedings of the Steklov Institute of Mathematics, 2009, Volume 265, Pages 217–228
DOI: https://doi.org/10.1134/S0081543809020205
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: O. G. Smolyanov, N. N. Shamarov, “Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator”, Selected topics of mathematical physics and p-adic analysis, Collected papers, Trudy Mat. Inst. Steklova, 265, MAIK Nauka/Interperiodica, Moscow, 2009, 229–240; Proc. Steklov Inst. Math., 265 (2009), 217–228
Citation in format AMSBIB
\Bibitem{SmoSha09}
\by O.~G.~Smolyanov, N.~N.~Shamarov
\paper Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator
\inbook Selected topics of mathematical physics and $p$-adic analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 265
\pages 229--240
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2599557}
\zmath{https://zbmath.org/?q=an:1180.81069}
\elib{https://elibrary.ru/item.asp?id=12601464}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 265
\pages 217--228
\crossref{https://doi.org/10.1134/S0081543809020205}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268514300020}
\elib{https://elibrary.ru/item.asp?id=15307824}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350065700}
Linking options:
  • https://www.mathnet.ru/eng/tm837
  • https://www.mathnet.ru/eng/tm/v265/p229
  • This publication is cited in the following 9 articles:
    1. E. A. Kurianovich, A. I. Mikhailov, I. V. Volovich, “On the theory of relativistic Brownian motion”, P-Adic Numbers Ultrametric Anal. Appl., 16:2 (2024), 113–127  mathnet  crossref  isi
    2. Yana A. Butko, Springer Proceedings in Mathematics & Statistics, 325, Semigroups of Operators – Theory and Applications, 2020, 19  crossref
    3. Remizov I.D., “Solution-Giving Formula to Cauchy Problem For Multidimensional Parabolic Equation With Variable Coefficients”, J. Math. Phys., 60:7 (2019), 071505  crossref  mathscinet  isi
    4. Remizov I.D., “Approximations to the Solution of Cauchy Problem For a Linear Evolution Equation Via the Space Shift Operator (Second-Order Equation Example)”, Appl. Math. Comput., 328 (2018), 243–246  crossref  mathscinet  isi  scopus
    5. Butko Ya.A., “Chernoff Approximation For Semigroups Generated By Killed Feller Processes and Feynman Formulae For Time-Fractional Fokker-Planck-Kolmogorov Equations”, Fract. Calc. Appl. Anal., 21:5 (2018), 1203–1237  crossref  mathscinet  isi  scopus
    6. A. Kh. Bikulov, A. P. Zubarev, “Complete systems of eigenfunctions of the Vladimirov operator in L2(Br) and L2(Qp)”, J. Math. Sci., 237:3 (2019), 362–374  mathnet  crossref
    7. N. N. Shamarov, “Funktsionalnyi operator Laplassa na p-adicheskom prostranstve i formuly Feinmana i Feinmana–Katsa”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2(23) (2011), 251–259  mathnet  crossref
    8. Smolyanov O.G., Shamarov N.N., “Hamiltonian Feynman formulas for equations containing the vladimirov operator with variable coefficients”, Dokl. Math., 84:2 (2011), 689–694  crossref  mathscinet  zmath  isi  elib  elib  scopus
    9. Smolyanov O.G., Shamarov N.N., Kpekpassi M., “Feynman-Kac and Feynman formulas for infinite-dimensional equations with Vladimirov operator”, Dokl. Math., 83:3 (2011), 389–393  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:865
    Full-text PDF :258
    References:182
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025