Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1976, Volume 31, Issue 4, Pages 1–53
DOI: https://doi.org/10.1070/RM1976v031n04ABEH001553
(Mi rm3759)
 

This article is cited in 42 scientific papers (total in 42 papers)

Measures on linear topological spaces

O. G. Smolyanov, S. V. Fomin
References:
Abstract: This survey contains some results on measures in linear topological spaces and in completely regular topcdogical spaces. These results are important in the theory of linear differential equations involving functions of an infinite-dimensional argument. We give conditions for the countable additivity of signed (and, more generally, vector-valued) cylindrical measures on products of measurable spaces (“Kolmogorov's theorem”) and for (again, signed and even vector–valued) cylindrical measures on arbitrary separated locally convex spaces (“Minlos–Sazonov theorem”, proved for signed measures by Shavgulidze). We consider the connection between Radon measures defined on σ-algebras of Borel subsets of a completely regular topological space and certain linear functionals on the space of bounded continuous real-valued functions defined on such a space. We describe a number of classes of completely regular topological spaces X having the property that the standard Prokhorov condition turns out to be sufficient or necessary for the relative weak sequential compactness of sets of Radon measures on X. For the case of positive Radon measures defined on locally convex spaces we prove a “P. Lévy theorem” and several related assertions, in which conditions for the weak convergence of sequences of positive measures and conditions for the weak compactness of families of such measures are stated as conditions on the families of their Fourier transforms.
Received: 31.03.1976
Bibliographic databases:
Document Type: Article
UDC: 513.83
Language: English
Original paper language: Russian
Citation: O. G. Smolyanov, S. V. Fomin, “Measures on linear topological spaces”, Russian Math. Surveys, 31:4 (1976), 1–53
Citation in format AMSBIB
\Bibitem{SmoFom76}
\by O.~G.~Smolyanov, S.~V.~Fomin
\paper Measures on~linear topological spaces
\jour Russian Math. Surveys
\yr 1976
\vol 31
\issue 4
\pages 1--53
\mathnet{http://mi.mathnet.ru/eng/rm3759}
\crossref{https://doi.org/10.1070/RM1976v031n04ABEH001553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=420764}
\zmath{https://zbmath.org/?q=an:0364.28010}
Linking options:
  • https://www.mathnet.ru/eng/rm3759
  • https://doi.org/10.1070/RM1976v031n04ABEH001553
  • https://www.mathnet.ru/eng/rm/v31/i4/p3
  • This publication is cited in the following 42 articles:
    1. G. Cannizzaro, J. Kiedrowski, “Stationary stochastic Navier–Stokes on the plane at and above criticality”, Stoch PDE: Anal Comp, 12:1 (2024), 247  crossref
    2. Ludkowski S.V., “Integral Operators For Nonlocally Compact Group Modules”, Quaest. Math., 45:7 (2022), 1125–1144  crossref  isi
    3. Orlov Yu.N. Sakbaev V.Zh. Shmidt E.V., “Operator Approach to Weak Convergence of Measures and Limit Theorems For Random Operators”, Lobachevskii J. Math., 42:10, SI (2021), 2413–2426  crossref  isi
    4. Yang Liu, Chunyou Sun, “Inviscid limit for the damped generalized incompressible Navier-Stokes equations on T2”, DCDS-S, 14:12 (2021), 4383  crossref
    5. Lorenzo Bertini, Gustavo Posta, “Boundary driven Brownian gas”, ALEA, 16:1 (2019), 361  crossref
    6. Bogachev V. Smolyanov O., “Topological Vector Spaces and Their Applications”, Topological Vector Spaces and Their Applications, Springer Monographs in Mathematics, Springer, 2017, 1–456  crossref  isi
    7. Sean Ledger, “Skorokhod's M1 topology for distribution-valued processes”, Electron. Commun. Probab., 21:none (2016)  crossref
    8. Kozlov V.V. Smolyanov O.G., “Invariant and Quasi-Invariant Measures on Infinite-Dimensional Spaces”, 92, no. 3, 2015, 743–746  crossref  isi
    9. M. Beau, T.C. Dorlas, “Discrete-time path distributions on a Hilbert space”, Indagationes Mathematicae, 2012  crossref
    10. Lakhdar Meziani, “Tightness of probability measures on function spaces”, Journal of Mathematical Analysis and Applications, 354:1 (2009), 202  crossref
    11. P. Constantin, F. Ramos, “Inviscid Limit for Damped and Driven Incompressible Navier–Stokes Equations in
      R2
      ”, Comm Math Phys, 275:2 (2007), 529  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Andrei Khrennikov, “To quantum averages through asymptotic expansion of classical averages on infinite-dimensional space”, J Math Phys (N Y ), 48:1 (2007), 013512  crossref  mathscinet  zmath  isi
    13. N. N. Shamarov, “The Maslov–Poisson measure and Feynman formulas for the solution of the Dirac equation”, J. Math. Sci., 151:1 (2008), 2767–2780  mathnet  crossref  mathscinet  zmath  elib  elib
    14. N. N. Shamarov, “Fourier Transforms of Distributions of Homogeneous Random Fields with Independent Increments and Complex Markov–Maslov Chains”, Math. Notes, 75:2 (2004), 284–290  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    15. S. V. Lyudkovskii, “Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a non-Archimedean Banach space”, J. Math. Sci., 128:6 (2005), 3428–3460  mathnet  crossref  mathscinet  zmath  elib  elib
    16. Atsushi INOUE, Yoshiaki MAEDA, “On a construction of a good parametrix for the Pauli equation”, Jpn. j. math, 29:1 (2003), 27  crossref
    17. Jun Kawabe, “A type of Strassen's theorem for positive vector measures with values in dual spaces”, Proc. Amer. Math. Soc., 128:11 (2000), 3291  crossref
    18. von Weizsaecker, H, “Connections between smooth measures and their logarithmic gradients and derivatives”, Doklady Akademii Nauk, 369:2 (1999), 158  mathnet  mathscinet  zmath  isi
    19. V. I. Bogachev, “Measures on topological spaces”, Journal of Mathematical Sciences (New York), 91:4 (1998), 3033  crossref  mathscinet  zmath
    20. V. I. Bogachev, “Differentiable measures and the Malliavin calculus”, Journal of Mathematical Sciences (New York), 87:4 (1997), 3577  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1006
    Russian version PDF:471
    English version PDF:44
    References:88
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025