Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 119, Number 3, Pages 355–367
DOI: https://doi.org/10.4213/tmf744
(Mi tmf744)
 

This article is cited in 5 scientific papers (total in 5 papers)

Change of variable formulas for Feynman pseudomeasures

O. G. Smolyanova, A. Trumenb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Wales Swansea
Full-text PDF (267 kB) Citations (5)
References:
Abstract: We derive formulas describing the transformations of Feynman pseudomeasures generated by nonlinear permutations of the phase space. In particular, we obtain analogues of the Ramer formula for the Gauss measures and of the change of variable formula proved by Elworthy and Truman.
Received: 05.06.1998
Revised: 18.02.1999
English version:
Theoretical and Mathematical Physics, 1999, Volume 119, Issue 3, Pages 677–686
DOI: https://doi.org/10.1007/BF02557378
Bibliographic databases:
Language: Russian
Citation: O. G. Smolyanov, A. Trumen, “Change of variable formulas for Feynman pseudomeasures”, TMF, 119:3 (1999), 355–367; Theoret. and Math. Phys., 119:3 (1999), 677–686
Citation in format AMSBIB
\Bibitem{SmoTru99}
\by O.~G.~Smolyanov, A.~Trumen
\paper Change of variable formulas for Feynman pseudomeasures
\jour TMF
\yr 1999
\vol 119
\issue 3
\pages 355--367
\mathnet{http://mi.mathnet.ru/tmf744}
\crossref{https://doi.org/10.4213/tmf744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1721462}
\zmath{https://zbmath.org/?q=an:1024.28012}
\elib{https://elibrary.ru/item.asp?id=13312035}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 119
\issue 3
\pages 677--686
\crossref{https://doi.org/10.1007/BF02557378}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000082143000001}
Linking options:
  • https://www.mathnet.ru/eng/tmf744
  • https://doi.org/10.4213/tmf744
  • https://www.mathnet.ru/eng/tmf/v119/i3/p355
  • This publication is cited in the following 5 articles:
    1. Garsia-Naranjo L.C., Montaldi J., Smolyanov O.G., “Transformations of Feynman path integrals and generalized densities of Feynman pseudomeasures”, Dokl. Math., 93:3 (2016), 282–285  crossref  mathscinet  zmath  isi  elib  scopus
    2. Gough J., Ratiu T.S., Smolyanov O.G., “Quantum Anomalies and Logarithmic Derivatives of Feynman Pseudomeasures”, Dokl. Math., 92:3 (2015), 764–768  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    3. Montaldi J., Smolyanov O.G., “Transformations of Measures Via Their Generalized Densities”, Russ. J. Math. Phys., 21:3 (2014), 379–385  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    4. Smolyanov, OG, “Hamiltonian Feynman path integrals via the Chernoff formula”, Journal of Mathematical Physics, 43:10 (2002), 5161  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. Smolyanov, OG, “Change-of-variable formulas in Feynman path integrals on compact Riemannian manifolds”, Doklady Mathematics, 64:2 (2001), 147  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:490
    Full-text PDF :274
    References:62
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025