Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 285, Pages 232–243
DOI: https://doi.org/10.1134/S0371968514020150
(Mi tm3539)
 

This article is cited in 41 scientific papers (total in 41 papers)

Feynman formulas as a method of averaging random Hamiltonians

Yu. N. Orlova, V. Zh. Sakbaevb, O. G. Smolyanovc

a M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Russia
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
References:
Abstract: We propose a method for finding the mathematical expectation of random unbounded operators in a Hilbert space. The method is based on averaging random one-parameter semigroups by means of the Feynman–Chernoff formula. We also consider an application of this method to the description of various operations that assign quantum Hamiltonians to the classical Hamilton functions.
Received in February 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 285, Pages 222–232
DOI: https://doi.org/10.1134/S0081543814040154
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Selected topics of mathematical physics and analysis, Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth, Trudy Mat. Inst. Steklova, 285, MAIK Nauka/Interperiodica, Moscow, 2014, 232–243; Proc. Steklov Inst. Math., 285 (2014), 222–232
Citation in format AMSBIB
\Bibitem{OrlSakSmo14}
\by Yu.~N.~Orlov, V.~Zh.~Sakbaev, O.~G.~Smolyanov
\paper Feynman formulas as a~method of averaging random Hamiltonians
\inbook Selected topics of mathematical physics and analysis
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 285
\pages 232--243
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3539}
\crossref{https://doi.org/10.1134/S0371968514020150}
\elib{https://elibrary.ru/item.asp?id=21726851}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 285
\pages 222--232
\crossref{https://doi.org/10.1134/S0081543814040154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339949700015}
\elib{https://elibrary.ru/item.asp?id=24048620}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926358865}
Linking options:
  • https://www.mathnet.ru/eng/tm3539
  • https://doi.org/10.1134/S0371968514020150
  • https://www.mathnet.ru/eng/tm/v285/p232
  • This publication is cited in the following 41 articles:
    1. R. Sh. Kalmetev, Yu. N. Orlov, V. Zh. Sakbaev, “Generalized Coherent States and Random Shift Operators”, Proc. Steklov Inst. Math., 324 (2024), 115–122  mathnet  crossref  crossref  mathscinet  zmath
    2. R. Sh. Kalmetev, “Usrednenie po Chernovu lineinykh differentsialnykh uravnenii”, Preprinty IPM im. M. V. Keldysha, 2023, 010, 12 pp.  mathnet  crossref
    3. R. Sh. Kalmetev, Yu. N. Orlov, V. Zh. Sakbaev, “Averaging of random affine transformations of functions domain”, Ufa Math. J., 15:2 (2023), 55–64  mathnet  crossref
    4. D. V. Grishin, Ya. Yu. Pavlovskiy, “Representation of solutions of the Cauchy problem for a one dimensional Schrödinger equation with a smooth bounded potential by quasi-Feynman formulae”, Izv. Math., 85:1 (2021), 24–60  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. L. A. Borisov, Yu. N. Orlov, “On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function”, Proc. Steklov Inst. Math., 313 (2021), 17–26  mathnet  crossref  crossref  isi  elib
    6. Orlov Yu.N. Sakbaev V.Zh. Shmidt E.V., “Operator Approach to Weak Convergence of Measures and Limit Theorems For Random Operators”, Lobachevskii J. Math., 42:10, SI (2021), 2413–2426  crossref  mathscinet  isi
    7. Kislitsyn A.A., Orlov Yu.N., 2021 International Joint Conference on Neural Networks (Ijcnn), IEEE International Joint Conference on Neural Networks (Ijcnn), IEEE, 2021  crossref  isi  scopus
    8. Borisov L.A., Orlov Y.N., “Generalized Evolution Equation of Wigner Function For An Arbitrary Linear Quantization”, Lobachevskii J. Math., 42:1 (2021), 63–69  crossref  mathscinet  isi
    9. Borisov L.A., Orlov Yu.N., “On the Generalization of Moyal Equation For An Arbitrary Linear Quantization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 24:1 (2021), 2150003  crossref  mathscinet  isi
    10. A. A. Kislitsin, Yu. N. Orlov, “Modeling evolution sample distributions of random quantities by the equation of Liuville”, Math. Models Comput. Simul., 12:5 (2020), 747–756  mathnet  crossref  crossref
    11. A. A. Kislitsyn, “Programmnyi kompleks dlya analiza statistiki soglasovannogo urovnya statsionarnosti vremennykh ryadov”, Preprinty IPM im. M. V. Keldysha, 2020, 026, 22 pp.  mathnet  crossref  elib
    12. Yu. N. Orlov, “Uravnenie evolyutsii funktsii Vignera dlya lineinykh kvantovanii”, Preprinty IPM im. M. V. Keldysha, 2020, 040, 22 pp.  mathnet  crossref
    13. Remizov I.D., “Formulas That Represent Cauchy Problem Solution For Momentum and Position Schrodinger Equation”, Potential Anal., 52:3 (2020), 339–370  crossref  mathscinet  isi
    14. Orlov Yu.N. Sakbaev V.Zh. Zavadsky D.V., “Operator Random Walks and Quantum Oscillator”, Lobachevskii J. Math., 41:4, SI (2020), 676–685  mathnet  crossref  mathscinet  isi
    15. Sakbaev V.Zh., Tsoy N.V., “Analogue of Chernoff Theorem For Cylindrical Pseudomeasures”, Lobachevskii J. Math., 41:12, SI (2020), 2369–2382  mathnet  crossref  mathscinet  isi  scopus
    16. A. A. Kislitsyn, A. B. Kozlova, M. B. Korsakova, Yu. N. Orlov, “Disorder indicator for nonstationary stochastic processes”, Dokl. Math., 99:1 (2019), 57–59  crossref  mathscinet  isi
    17. Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups”, Proc. Steklov Inst. Math., 306 (2019), 196–211  mathnet  crossref  crossref  mathscinet  isi  elib
    18. Yu. N. Orlov, A. A. Kislitsyn, “Chernoff approximations for nonstationary random walk modeling”, Lobachevskii J. Math., 40:12 (2019), 2095–2102  crossref  mathscinet  isi  scopus
    19. Yu. N. Orlov, A. A. Kislitsyn, “Nonstationary stochastic motion modeling by dynamical systems”, Proceedings of the 33Rd International Ecms Conference on Modelling and Simulation (Ecms 2019), Communications of the Ecms, 33, no. 1, eds. M. Iacono, F. Palmieri, M. Gribaudo, M. Ficco, European Council Modelling & Simulation, 2019, 466–472  isi
    20. L. S. Efremova, A. D. Grekhneva, V. Zh. Sakbaev, “Phase flows generated by Cauchy problem for nonlinear Schrodinger equation and dynamical mappings of quantum states”, Lobachevskii J. Math., 40:10, SI (2019), 1455–1469  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:795
    Full-text PDF :251
    References:126
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025