Abstract:
We propose a method for finding the mathematical expectation of random unbounded operators in a Hilbert space. The method is based on averaging random one-parameter semigroups by means of the Feynman–Chernoff formula. We also consider an application of this method to the description of various operations that assign quantum Hamiltonians to the classical Hamilton functions.
Citation:
Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Selected topics of mathematical physics and analysis, Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth, Trudy Mat. Inst. Steklova, 285, MAIK Nauka/Interperiodica, Moscow, 2014, 232–243; Proc. Steklov Inst. Math., 285 (2014), 222–232
\Bibitem{OrlSakSmo14}
\by Yu.~N.~Orlov, V.~Zh.~Sakbaev, O.~G.~Smolyanov
\paper Feynman formulas as a~method of averaging random Hamiltonians
\inbook Selected topics of mathematical physics and analysis
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 285
\pages 232--243
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3539}
\crossref{https://doi.org/10.1134/S0371968514020150}
\elib{https://elibrary.ru/item.asp?id=21726851}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 285
\pages 222--232
\crossref{https://doi.org/10.1134/S0081543814040154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339949700015}
\elib{https://elibrary.ru/item.asp?id=24048620}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926358865}
Linking options:
https://www.mathnet.ru/eng/tm3539
https://doi.org/10.1134/S0371968514020150
https://www.mathnet.ru/eng/tm/v285/p232
This publication is cited in the following 41 articles:
R. Sh. Kalmetev, Yu. N. Orlov, V. Zh. Sakbaev, “Generalized Coherent States and Random Shift Operators”, Proc. Steklov Inst. Math., 324 (2024), 115–122
R. Sh. Kalmetev, “Usrednenie po Chernovu lineinykh differentsialnykh uravnenii”, Preprinty IPM im. M. V. Keldysha, 2023, 010, 12 pp.
R. Sh. Kalmetev, Yu. N. Orlov, V. Zh. Sakbaev, “Averaging of random affine transformations of functions domain”, Ufa Math. J., 15:2 (2023), 55–64
D. V. Grishin, Ya. Yu. Pavlovskiy, “Representation of solutions of the Cauchy problem for a one dimensional Schrödinger equation
with a smooth bounded potential by quasi-Feynman formulae”, Izv. Math., 85:1 (2021), 24–60
L. A. Borisov, Yu. N. Orlov, “On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function”, Proc. Steklov Inst. Math., 313 (2021), 17–26
Orlov Yu.N. Sakbaev V.Zh. Shmidt E.V., “Operator Approach to Weak Convergence of Measures and Limit Theorems For Random Operators”, Lobachevskii J. Math., 42:10, SI (2021), 2413–2426
Kislitsyn A.A., Orlov Yu.N., 2021 International Joint Conference on Neural Networks (Ijcnn), IEEE International Joint Conference on Neural Networks (Ijcnn), IEEE, 2021
Borisov L.A., Orlov Y.N., “Generalized Evolution Equation of Wigner Function For An Arbitrary Linear Quantization”, Lobachevskii J. Math., 42:1 (2021), 63–69
Borisov L.A., Orlov Yu.N., “On the Generalization of Moyal Equation For An Arbitrary Linear Quantization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 24:1 (2021), 2150003
A. A. Kislitsin, Yu. N. Orlov, “Modeling evolution sample distributions of random quantities by the equation of Liuville”, Math. Models Comput. Simul., 12:5 (2020), 747–756
A. A. Kislitsyn, “Programmnyi kompleks dlya analiza statistiki soglasovannogo urovnya statsionarnosti vremennykh ryadov”, Preprinty IPM im. M. V. Keldysha, 2020, 026, 22 pp.
Yu. N. Orlov, “Uravnenie evolyutsii funktsii Vignera dlya lineinykh kvantovanii”, Preprinty IPM im. M. V. Keldysha, 2020, 040, 22 pp.
Remizov I.D., “Formulas That Represent Cauchy Problem Solution For Momentum and Position Schrodinger Equation”, Potential Anal., 52:3 (2020), 339–370
Orlov Yu.N. Sakbaev V.Zh. Zavadsky D.V., “Operator Random Walks and Quantum Oscillator”, Lobachevskii J. Math., 41:4, SI (2020), 676–685
Sakbaev V.Zh., Tsoy N.V., “Analogue of Chernoff Theorem For Cylindrical Pseudomeasures”, Lobachevskii J. Math., 41:12, SI (2020), 2369–2382
A. A. Kislitsyn, A. B. Kozlova, M. B. Korsakova, Yu. N. Orlov, “Disorder indicator for nonstationary stochastic processes”, Dokl. Math., 99:1 (2019), 57–59
Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups”, Proc. Steklov Inst. Math., 306 (2019), 196–211
Yu. N. Orlov, A. A. Kislitsyn, “Chernoff approximations for nonstationary random walk modeling”, Lobachevskii J. Math., 40:12 (2019), 2095–2102
Yu. N. Orlov, A. A. Kislitsyn, “Nonstationary stochastic motion modeling by dynamical systems”, Proceedings of the 33Rd International Ecms Conference on Modelling and Simulation (Ecms 2019), Communications of the Ecms, 33, no. 1, eds. M. Iacono, F. Palmieri, M. Gribaudo, M. Ficco, European Council Modelling & Simulation, 2019, 466–472
L. S. Efremova, A. D. Grekhneva, V. Zh. Sakbaev, “Phase flows generated by Cauchy problem for nonlinear Schrodinger equation and dynamical mappings of quantum states”, Lobachevskii J. Math., 40:10, SI (2019), 1455–1469