Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 1, Pages 109–125
DOI: https://doi.org/10.4213/tvp149
(Mi tvp149)
 

This article is cited in 15 scientific papers (total in 15 papers)

Wigner function and diffusion in collisionfree media of quantum particles

V. V. Kozlova, O. G. Smolyanovb

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A quantum Poincaré model (realizing behavior of ideal gas of noninteracting quantum Bolztman particles) is introduced. We use the fact that the evolution of the Wigner function corresponding to a quantum system with a quadratic Hamiltonian coincides with the evolution of a probability distribution on a phase space of the Hamiltonian system, the quantization of which gives the quantum system under consideration.
Keywords: Poincaré model, Wigner function, Heisenberg equation, Hamiltonian equation, Weyl operator, Weyl function, ideal gas.
Received: 06.10.2005
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 1, Pages 168–181
DOI: https://doi.org/10.1137/S0040585X97982220
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Kozlov, O. G. Smolyanov, “Wigner function and diffusion in collisionfree media of quantum particles”, Teor. Veroyatnost. i Primenen., 51:1 (2006), 109–125; Theory Probab. Appl., 51:1 (2007), 168–181
Citation in format AMSBIB
\Bibitem{KozSmo06}
\by V.~V.~Kozlov, O.~G.~Smolyanov
\paper Wigner function and diffusion in collisionfree media of quantum particles
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 1
\pages 109--125
\mathnet{http://mi.mathnet.ru/tvp149}
\crossref{https://doi.org/10.4213/tvp149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2324169}
\zmath{https://zbmath.org/?q=an:1120.82005}
\elib{https://elibrary.ru/item.asp?id=9233592}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 1
\pages 168--181
\crossref{https://doi.org/10.1137/S0040585X97982220}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245677000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247522216}
Linking options:
  • https://www.mathnet.ru/eng/tvp149
  • https://doi.org/10.4213/tvp149
  • https://www.mathnet.ru/eng/tvp/v51/i1/p109
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:1024
    Full-text PDF :261
    References:142
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024