Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 65–69
DOI: https://doi.org/10.31857/S2686954320030200
(Mi danma74)
 

This article is cited in 11 scientific papers (total in 11 papers)

MATHEMATICS

Schrödinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function

O. G. Smolyanovab, N. N. Shamarovab

a Lomonosov Moscow State University, Moscow, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russian Federation
References:
Abstract: According to a theorem of Andre Weil, there does not exist a standard Lebesgue measure on any infinite-dimensional locally convex space. Because of that, Schrödinger quantization of an infinite-dimensional Hamiltonian system is often defined using a $\sigma$-additive measure, which is not translation-invariant. In the present paper, a completely different approach is applied: we use the generalized Lebesgue measure, which is translation-invariant. In implicit form, such a measure was used in the first paper published by Feynman (1948). In this situation, pseudodifferential operators whose symbols are classical Hamiltonian functions are formally defined as in the finite-dimensional case. In particular, they use unitary Fourier transforms which map functions (on a finite-dimensional space) into functions. Such a definition of the infinite-dimensional unitary Fourier transforms has not been used in the literature.
Keywords: quantization, Schrödinger quantization, generalized Lebesgue measure, infinite-dimensional Hamiltonian systems, Heisenberg algebra, infinite-dimensional pseudodifferential operators.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
This work was supported by Lomonosov Moscow State University within the grant “Fundamental Problems in Mathematics and Mechanics”.
Presented: V. V. Kozlov
Received: 29.12.2019
Revised: 29.12.2019
Accepted: 19.03.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 227–230
DOI: https://doi.org/10.1134/S1064562420030205
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: O. G. Smolyanov, N. N. Shamarov, “Schrödinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 65–69; Dokl. Math., 101:3 (2020), 227–230
Citation in format AMSBIB
\Bibitem{SmoSha20}
\by O.~G.~Smolyanov, N.~N.~Shamarov
\paper Schr\"odinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 65--69
\mathnet{http://mi.mathnet.ru/danma74}
\crossref{https://doi.org/10.31857/S2686954320030200}
\zmath{https://zbmath.org/?q=an:7424595}
\elib{https://elibrary.ru/item.asp?id=42930011}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 227--230
\crossref{https://doi.org/10.1134/S1064562420030205}
Linking options:
  • https://www.mathnet.ru/eng/danma74
  • https://www.mathnet.ru/eng/danma/v492/p65
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :120
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024