Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 6, Pages 1131–1158
DOI: https://doi.org/10.1070/IM8402
(Mi im8402)
 

This article is cited in 41 scientific papers (total in 41 papers)

Unbounded random operators and Feynman formulae

Yu. N. Orlova, V. Zh. Sakbaevbc, O. G. Smolyanovd

a Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
c Peoples Friendship University of Russia, Moscow
d Lomonosov Moscow State University
References:
Abstract: We introduce and study probabilistic interpolations of various quantization methods. To do this, we develop a method for finding the expectations of unbounded random operators on a Hilbert space by averaging (with the help of Feynman formulae) the random one-parameter semigroups generated by these operators (the usual method for finding the expectations of bounded random operators is generally inapplicable to unbounded ones). Although the averaging of families of semigroups generates a function that need not possess the semigroup property, the Chernoff iterates of this function approximate a certain semigroup, whose generator is taken for the expectation of the original random operator. In the case of bounded random operators, this expectation coincides with the ordinary one.
Keywords: quantization, one-parameter semigroup, random operator, Hamiltonian operator, Hamiltonian function, Chernoff's formula, Feynman formula, Chernoff equivalence, randomization, probabilistic interpolation.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00516
Russian Science Foundation 14-11-00687
O. G. Smolyanov was supported by RFBR (grant no. 14-01-00516). The work of V. Zh. Sakbaev was supported by the Russian Science Foundation (grant no. 14-11-00687) at the Steklov Mathematical Institute of the Russian Academy of Sciences.
Received: 29.04.2015
Revised: 11.02.2016
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 46G10, 47D08, 81Q30
Language: English
Original paper language: Russian
Citation: Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158
Citation in format AMSBIB
\Bibitem{OrlSakSmo16}
\by Yu.~N.~Orlov, V.~Zh.~Sakbaev, O.~G.~Smolyanov
\paper Unbounded random operators and Feynman formulae
\jour Izv. Math.
\yr 2016
\vol 80
\issue 6
\pages 1131--1158
\mathnet{http://mi.mathnet.ru//eng/im8402}
\crossref{https://doi.org/10.1070/IM8402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588817}
\zmath{https://zbmath.org/?q=an:1422.47049}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80.1131O}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393621500007}
\elib{https://elibrary.ru/item.asp?id=27484928}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011710037}
Linking options:
  • https://www.mathnet.ru/eng/im8402
  • https://doi.org/10.1070/IM8402
  • https://www.mathnet.ru/eng/im/v80/i6/p141
  • This publication is cited in the following 41 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:927
    Russian version PDF:197
    English version PDF:28
    References:78
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024