S. E. Nohrin, V. T. Shevaldin, “Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients”, Chebyshevskii Sb., 25:2 (2024), 243–250
2.
V. T. Shevaldin, “Yu. N. Subbotin's Method in the Problem of Extremal Interpolation in the Mean in the Space $L_p(\mathbb R)$ with Overlapping Averaging Intervals”, Mat. Zametki, 115:6 (2024), 919–934; Math. Notes, 115:6 (2024), 1017–1029
3.
V. T. Shevaldin, “Extremal Interpolation in the Mean in the Space $L_1(\mathbb R)$ with Overlapping Averaging Intervals”, Mat. Zametki, 115:1 (2024), 123–136; Math. Notes, 115:1 (2024), 102–113
V. T. Shevaldin, “Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator”, Mat. Zametki, 113:3 (2023), 453–460; Math. Notes, 113:3 (2023), 446–452
5.
V. T. Shevaldin, “Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023), 219–232
V. T. Shevaldin, “On Favard local parabolic interpolating splines with additional knots”, Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023), 979–986; Comput. Math. Math. Phys., 63:6 (2023), 1045–1051
2022
7.
V. T. Shevaldin, “Extremal interpolation with the least value of the norm of the second derivative in $L_p(\mathbb R)$”, Izv. RAN. Ser. Mat., 86:1 (2022), 219–236; Izv. Math., 86:1 (2022), 203–219
Yu. N. Subbotin, V. T. Shevaldin, “Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis”, Mat. Sb., 213:4 (2022), 123–144; Sb. Math., 213:4 (2022), 556–577
V. T. Shevaldin, “On Yu. N. Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 237–249; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S229–S241
2021
10.
V. T. Shevaldin, “Subbotin's splines in the problem of extremal interpolation in the space $L_p$ for second-order linear differential operators”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021), 255–262
2020
11.
V. T. Shevaldin, “Local approximation by parabolic splines in the mean with large averaging intervals”, Mat. Zametki, 108:5 (2020), 771–781; Math. Notes, 108:5 (2020), 733–742
12.
S. I. Novikov, V. T. Shevaldin, “Extremal interpolation on the semiaxis with the smallest norm of the third derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020), 210–223
S. I. Novikov, V. T. Shevaldin, “On the connection between the second divided difference and the second derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020), 216–224
V. T. Shevaldin, “Algorithms for the construction of third-order local exponential splines with equidistant knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019), 279–287
Yu. N. Subbotin, V. T. Shevaldin, “A Method for the Construction of Local Parabolic Splines with Additional Knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019), 205–219; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S151–S166
Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Extremal functional interpolation and splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 200–225
V. T. Shevaldin, “On integral Lebesgue constants of local splines with uniform knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018), 290–297; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S158–S165
V. T. Shevaldin, O. Ya. Shevaldina, “The Lebesgue constant of local cubic splines with equally-spaced knots”, Sib. Zh. Vychisl. Mat., 20:4 (2017), 445–451; Num. Anal. Appl., 10:4 (2017), 362–367
V. T. Shevaldin, “Uniform Lebesgue constants of local spline approximation”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 292–299; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 196–202
20.
Valerii T. Shevaldin, “Calibration relations for analogues of the basis splines with uniform nodes”, Ural Math. J., 3:1 (2017), 76–80
2016
21.
V. T. Shevaldin, “A method for the construction of analogs of wavelets by means of trigonometric $B$-splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 320–327; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 165–171
22.
E. V. Strelkova, V. T. Shevaldin, “On uniform Lebesgue constants of third-order local trigonometric splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016), 245–254
V. T. Shevaldin, O. Ya. Shevaldina, “Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015), 309–315; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 175–181
E. V. Strelkova, V. T. Shevaldin, “On uniform Lebesgue constants of local exponential splines with equidistant knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015), 261–272; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 206–217
E. G. Pytkeev, V. T. Shevaldin, “Two-scale relations for $B$-$\mathcal L$-splines with uniform knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015), 234–243; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 186–195
E. V. Strelkova, V. T. Shevaldin, “On Lebesgue constants of local parabolic splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 213–219; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 192–198
E. V. Strelkova, V. T. Shevaldin, “Local exponential splines with arbitrary knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 258–263; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 189–194
Yu. S. Volkov, V. T. Shevaldin, “Shape preserving conditions for quadratic spline interpolation in the sense of Subbotin and Marsden”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012), 145–152
Yu. S. Volkov, E. G. Pytkeev, V. T. Shevaldin, “Orders of approximation by local exponential splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012), 135–144; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 175–184
Yu. S. Volkov, E. V. Strelkova, V. T. Shevaldin, “Local approximation by splines with displacement of nodes”, Mat. Tr., 14:2 (2011), 73–82; Siberian Adv. Math., 23:1 (2013), 69–75
E. V. Strelkova, V. T. Shevaldin, “Form preservation under approximation by local exponential splines of an arbitrary order”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011), 291–299; Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 171–179
Yu. S. Volkov, V. V. Bogdanov, V. L. Miroshnichenko, V. T. Shevaldin, “Shape-Preserving Interpolation by Cubic Splines”, Mat. Zametki, 88:6 (2010), 836–844; Math. Notes, 88:6 (2010), 798–805
E. V. Strelkova, V. T. Shevaldin, “Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010), 272–280; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S133–S141
P. G. Zhdanov, V. T. Shevaldin, “Approximation by third-order local $\mathcal L$-splines with uniform nodes”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010), 156–165
2006
36.
V. T. Shevaldin, “Approximation by local $L$-splines corresponding to a linear differential operator of the second order”, Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006), 195–213; Proc. Steklov Inst. Math. (Suppl.), 255, suppl. 2 (2006), S178–S197
K. V. Kostousov, V. T. Shevaldin, “Approximation by local trigonometric splines”, Mat. Zametki, 77:3 (2005), 354–363; Math. Notes, 77:3 (2005), 326–334
V. T. Shevaldin, “The Jackson–Stechkin inequality in the space $C(\mathbb T)$ with trigonometric continuity modulus annihilating the first harmonics”, Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001), 231–237; Proc. Steklov Inst. Math. (Suppl.), 2001no. , suppl. 1, S206–S213
S. I. Novikov, V. T. Shevaldin, “A problem of extremal interpolation for multivariate functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001), 144–159; Proc. Steklov Inst. Math. (Suppl.), 2001no. , suppl. 1, S150–S166
A. G. Babenko, N. I. Chernykh, V. T. Shevaldin, “The Jackson–Stechkin inequality in $L^2$ with a trigonometric modulus of continuity”, Mat. Zametki, 65:6 (1999), 928–932; Math. Notes, 65:6 (1999), 777–781
V. T. Shevaldin, “Extremal interpolation in the mean with overlapping averaging intervals and $L$-splines”, Izv. RAN. Ser. Mat., 62:4 (1998), 201–224; Izv. Math., 62:4 (1998), 833–856
V. T. Shevaldin, “Lower estimates of the widths of the classes of functions defined by a modulus of continuity”, Izv. RAN. Ser. Mat., 58:5 (1994), 172–188; Russian Acad. Sci. Izv. Math., 45:2 (1995), 399–415
V. T. Shevaldin, “Interpolating periodic splines and widths of classes of functions
with a bounded noninteger derivative”, Dokl. Akad. Nauk, 328:3 (1993), 296–298; Dokl. Math., 47:1 (1993), 79–82
45.
V. T. Shevaldin, “Lower bounds for the widths of classes of periodic functions with a bounded fractional derivative”, Mat. Zametki, 53:2 (1993), 145–151; Math. Notes, 53:2 (1993), 218–222
V. T. Shevaldin, “Lower estimations of widths some classes of periodic functions”, Trudy Mat. Inst. Steklov., 198 (1992), 242–267; Proc. Steklov Inst. Math., 198 (1994), 233–255
V. T. Shevaldin, “Lower bounds on widths of classes of sourcewise representable functions”, Trudy Mat. Inst. Steklov., 189 (1989), 185–200; Proc. Steklov Inst. Math., 189 (1990), 217–234
V. T. Shevaldin, “Some problems of extremal interpolation in the mean for linear differential operators”, Trudy Mat. Inst. Steklov., 164 (1983), 203–240; Proc. Steklov Inst. Math., 164 (1985), 233–273
V. T. Shevaldin, “Extremal interpolation with least norm of linear differential operator”, Mat. Zametki, 27:5 (1980), 721–740; Math. Notes, 27:5 (1980), 344–354
R. R. Akopyan, N. Yu. Antonov, V. V. Arestov, A. G. Babenko, N. V. Baidakova, V. I. Berdyshev, V. V. Vasin, S. I. Novikov, N. L. Patsko, A. G. Chentsov, N. I. Chernykh, V. T. Shevaldin, “Yurii Nikolaevich Subbotin (A Tribute to His Memory)”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 9–16; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S1–S6
2007
55.
V. V. Arestov, V. I. Berdyshev, O. V. Besov, N. N. Krasovskii, S. M. Nikol'skii, S. I. Novikov, Yu. S. Osipov, S. A. Telyakovskii, N. I. Chernykh, V. T. Shevaldin, “Yurii Nikolaevich Subbotin (on his 70th birthday)”, Uspekhi Mat. Nauk, 62:2(374) (2007), 187–190; Russian Math. Surveys, 62:2 (2007), 403–406