Abstract:
We continue the study of the properties of local L-splines with uniform knots (such splines were constructed in the authors' earlier papers) corresponding to a linear differential operator L of order r with constant coefficients and real pairwise distinct roots of the characteristic polynomial. Sufficient conditions (which are also necessary) are established under which the L-spline locally inherits the property of the generalized k-monotonicity of (k⩽r−1) input data, which are the values of the approximated function at the nodes of a uniform grid shifted with respect to the grid of knots of the L-spline. The parameters of an L-spline that is exact on the kernel of the operator L are written explicitly.
Keywords:
form preservation, k-monotonicity, local L-spline.
Citation:
E. V. Strelkova, V. T. Shevaldin, “Form preservation under approximation by local exponential splines of an arbitrary order”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 291–299; Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 171–179
\Bibitem{StrShe11}
\by E.~V.~Strelkova, V.~T.~Shevaldin
\paper Form preservation under approximation by local exponential splines of an arbitrary order
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 3
\pages 291--299
\mathnet{http://mi.mathnet.ru/timm741}
\elib{https://elibrary.ru/item.asp?id=17870141}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 277
\issue , suppl. 1
\pages 171--179
\crossref{https://doi.org/10.1134/S0081543812050173}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305909000017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863605185}
Linking options:
https://www.mathnet.ru/eng/timm741
https://www.mathnet.ru/eng/timm/v17/i3/p291
This publication is cited in the following 3 articles:
E. V. Strelkova, V. T. Shevaldin, “On Lebesgue constants of local parabolic splines”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 192–198
E. V. Strelkova, V. T. Shevaldin, “Local exponential splines with arbitrary knots”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 189–194
Yu. S. Volkov, E. G. Pytkeev, V. T. Shevaldin, “Orders of approximation by local exponential splines”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 175–184