Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 45, Issue 2, Pages 399–415
DOI: https://doi.org/10.1070/IM1995v045n02ABEH001648
(Mi im765)
 

This article is cited in 3 scientific papers (total in 3 papers)

Lower estimates of the widths of the classes of functions defined by a modulus of continuity

V. T. Shevaldin
References:
Abstract: For kernels $K$ satisfying the condition $B_{2m}$ introduced by the author, lower bounds are found for the Kolmogorov widths of classes of convolutions $K\ast H^\omega$, $\omega$ convex, in the uniform metric. In a number of cases these bounds are sharp.
Received: 23.07.1992
Bibliographic databases:
UDC: 517.5
MSC: Primary 41A46; Secondary 26A15
Language: English
Original paper language: Russian
Citation: V. T. Shevaldin, “Lower estimates of the widths of the classes of functions defined by a modulus of continuity”, Russian Acad. Sci. Izv. Math., 45:2 (1995), 399–415
Citation in format AMSBIB
\Bibitem{She94}
\by V.~T.~Shevaldin
\paper Lower estimates of the widths of the classes of functions defined by a modulus of continuity
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 45
\issue 2
\pages 399--415
\mathnet{http://mi.mathnet.ru//eng/im765}
\crossref{https://doi.org/10.1070/IM1995v045n02ABEH001648}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1307315}
\zmath{https://zbmath.org/?q=an:0847.41018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ08600008}
Linking options:
  • https://www.mathnet.ru/eng/im765
  • https://doi.org/10.1070/IM1995v045n02ABEH001648
  • https://www.mathnet.ru/eng/im/v58/i5/p172
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024