Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 3, Pages 279–287
DOI: https://doi.org/10.21538/0134-4889-2019-25-3-279-287
(Mi timm1664)
 

This article is cited in 1 scientific paper (total in 1 paper)

Algorithms for the construction of third-order local exponential splines with equidistant knots

V. T. Shevaldin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (191 kB) Citations (1)
References:
Abstract: We construct new local exponential splines with equidistant knots corresponding to a third-order linear differential operator $\mathcal L_3(D)$ of the form
$$ \mathcal L_3(D)=(D-\beta)(D-\gamma)(D-\delta)\quad (\beta,\gamma,\delta\in \mathbb R). $$
We also establish upper order estimates for the error of approximation by these splines in the uniform metric on the Sobolev class of three times differentiable functions $W_{\infty}^{\mathcal L_3}$. In particular, for the differential operator $\mathcal L_3(D)=D(D^2-\beta^2)$, we give a general scheme for the construction of local splines with additional knots, which leads in one case to known shape-preserving splines and in another case to new local interpolation splines exact on the kernel of $\mathcal L_3(D)$.
Keywords: local exponential splines, linear differential operator, approximation, interpolation.
Received: 14.06.2019
Revised: 10.07.2019
Accepted: 05.08.2019
Bibliographic databases:
Document Type: Article
UDC: 519.65
MSC: 41A15
Language: Russian
Citation: V. T. Shevaldin, “Algorithms for the construction of third-order local exponential splines with equidistant knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 3, 2019, 279–287
Citation in format AMSBIB
\Bibitem{She19}
\by V.~T.~Shevaldin
\paper Algorithms for the construction of third-order local exponential splines with equidistant knots
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 3
\pages 279--287
\mathnet{http://mi.mathnet.ru/timm1664}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-3-279-287}
\elib{https://elibrary.ru/item.asp?id=39323554}
Linking options:
  • https://www.mathnet.ru/eng/timm1664
  • https://www.mathnet.ru/eng/timm/v25/i3/p279
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :58
    References:30
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024