Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 272–280 (Mi timm661)  

This article is cited in 5 scientific papers (total in 5 papers)

Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator

E. V. Strelkova, V. T. Shevaldin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (172 kB) Citations (5)
References:
Abstract: We construct local $\mathcal L$-splines with uniform nodes that preserve subsets from the kernel of a linear differential operator $\mathcal L$ of order $r$ with constant real coefficients and pairwise distinct roots of the characteristic polynomial. Pointwise estimates are found for the error of approximation by the constructed $\mathcal L$-splines on classes of functions defined by differential operators of orders smaller than $r$.
Keywords: approximation, local $\mathcal L$-splines, differential operator.
Received: 01.02.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 273, Issue 1, Pages S133–S141
DOI: https://doi.org/10.1134/S0081543811050142
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: E. V. Strelkova, V. T. Shevaldin, “Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 272–280; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S133–S141
Citation in format AMSBIB
\Bibitem{StrShe10}
\by E.~V.~Strelkova, V.~T.~Shevaldin
\paper Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a~differential operator
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 272--280
\mathnet{http://mi.mathnet.ru/timm661}
\elib{https://elibrary.ru/item.asp?id=15318508}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S133--S141
\crossref{https://doi.org/10.1134/S0081543811050142}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959236886}
Linking options:
  • https://www.mathnet.ru/eng/timm661
  • https://www.mathnet.ru/eng/timm/v16/i4/p272
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024