Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 290–297
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-290-297
(Mi timm1543)
 

This article is cited in 2 scientific papers (total in 2 papers)

On integral Lebesgue constants of local splines with uniform knots

V. T. Shevaldin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (174 kB) Citations (2)
References:
Abstract: We study the stability properties of generalized local splines of the form
$$ S(x)=S(f,x)=\sum_{j\in \mathbb Z} y_j B_{\varphi}\Big( x+\frac{3h}{2}-jh\Big)\quad (x\in \mathbb R), $$
where $\varphi\in C^1[-h,h]$ for $h>0$, $\varphi(0)=\varphi'(0)=0$, $\varphi(-x)=\varphi(x)$ for $x\in [0;h]$, $\varphi(x)$ is nondecreasing on $[0;h]$, $f$ is an arbitrary function from $\mathbb R$ to $\mathbb R$, $y_j=f(jh)$ for $j\in \mathbb Z$, and
$$ B_{\varphi}(x)=m(h)\left\{
\begin{array}{cl} \varphi(x), {\&} x\in [0;h],\\[1ex] 2\varphi(h)-\varphi(x-h)-\varphi(2h-x), {\&} x\in [h;2h],\\[1ex] \varphi(3h-x), {\&} x\in [2h;3h],\\[1ex] 0, {\&} x\not\in [0;3h]\end{array}
\right. $$
with $m(h)>0$. Such splines were constructed by the author earlier. In the present paper we calculate the exact values of their integral Lebesgue constants (the norms of linear operators from $l$ to $L$) on the axis $\mathbb R$ and on any segment of the axis for a certain choice of the boundary conditions and the normalizing factor $m(h)$ of the spline $S$.
Keywords: Lebesgue constants, local splines, boundary conditions.
Funding agency Grant number
Russian Science Foundation 14-11-00702
Received: 15.02.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 305, Issue 1, Pages S158–S165
DOI: https://doi.org/10.1134/S0081543819040163
Bibliographic databases:
Document Type: Article
UDC: 519.65
MSC: 41A15
Language: Russian
Citation: V. T. Shevaldin, “On integral Lebesgue constants of local splines with uniform knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 290–297; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S158–S165
Citation in format AMSBIB
\Bibitem{She18}
\by V.~T.~Shevaldin
\paper On integral Lebesgue constants of local splines with uniform knots
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 290--297
\mathnet{http://mi.mathnet.ru/timm1543}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-290-297}
\elib{https://elibrary.ru/item.asp?id=35060698}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 305
\issue , suppl. 1
\pages S158--S165
\crossref{https://doi.org/10.1134/S0081543819040163}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451633100027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073549257}
Linking options:
  • https://www.mathnet.ru/eng/timm1543
  • https://www.mathnet.ru/eng/timm/v24/i2/p290
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:151
    Full-text PDF :32
    References:22
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024