Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 3, Pages 354–363
DOI: https://doi.org/10.4213/mzm2498
(Mi mzm2498)
 

This article is cited in 10 scientific papers (total in 10 papers)

Approximation by local trigonometric splines

K. V. Kostousova, V. T. Shevaldinb

a Ural State University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: For the class $W_\infty^{\mathscr L_2}=\{f:f'\in AC,\ \|f''+\alpha^2f\|_\infty\leqslant1\}$ of 1-periodic functions, we use the linear noninterpolating method of trigonometric spline approximation possessing extremal and smoothing properties and locally inheriting the monotonicity of the initial data, i.e., the values of a function from $W_\infty^{\mathscr L_2}$ at the points of a uniform grid. The approximation error is calculated exactly for this class of functions in the uniform metric. It coincides with the Kolmogorov and Konovalov widths.
Received: 01.07.2003
English version:
Mathematical Notes, 2005, Volume 77, Issue 3, Pages 326–334
DOI: https://doi.org/10.1007/s11006-005-0033-z
Bibliographic databases:
UDC: 519.65
Language: Russian
Citation: K. V. Kostousov, V. T. Shevaldin, “Approximation by local trigonometric splines”, Mat. Zametki, 77:3 (2005), 354–363; Math. Notes, 77:3 (2005), 326–334
Citation in format AMSBIB
\Bibitem{KosShe05}
\by K.~V.~Kostousov, V.~T.~Shevaldin
\paper Approximation by local trigonometric splines
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 3
\pages 354--363
\mathnet{http://mi.mathnet.ru/mzm2498}
\crossref{https://doi.org/10.4213/mzm2498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2157896}
\zmath{https://zbmath.org/?q=an:1080.41008}
\elib{https://elibrary.ru/item.asp?id=9150077}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 3
\pages 326--334
\crossref{https://doi.org/10.1007/s11006-005-0033-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228965300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20244388274}
Linking options:
  • https://www.mathnet.ru/eng/mzm2498
  • https://doi.org/10.4213/mzm2498
  • https://www.mathnet.ru/eng/mzm/v77/i3/p354
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:731
    Full-text PDF :276
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024