Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 4, Pages 445–451
DOI: https://doi.org/10.15372/SJNM20170408
(Mi sjvm663)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Lebesgue constant of local cubic splines with equally-spaced knots

V. T. Shevaldinab, O. Ya. Shevaldinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaja str., Ekaterinburg, 620990, Russia
b Ural Federal University, 19 Mira str., Ekaterinburg, 620002, Russia
Full-text PDF (468 kB) Citations (3)
References:
Abstract: It is proved that the uniform Lebesgue constant (the norm of a linear operator from $C$ to $C$) of local cubic splines with equally-spaced knots, which preserve cubic polynomials, is equal to $11/9$.
Key words: Lebesgue constants, local cubic splines, equally-spaced knots.
Received: 20.03.2017
Revised: 25.05.2017
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 4, Pages 362–367
DOI: https://doi.org/10.1134/S1995423917040085
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: V. T. Shevaldin, O. Ya. Shevaldina, “The Lebesgue constant of local cubic splines with equally-spaced knots”, Sib. Zh. Vychisl. Mat., 20:4 (2017), 445–451; Num. Anal. Appl., 10:4 (2017), 362–367
Citation in format AMSBIB
\Bibitem{SheShe17}
\by V.~T.~Shevaldin, O.~Ya.~Shevaldina
\paper The Lebesgue constant of local cubic splines with equally-spaced knots
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 4
\pages 445--451
\mathnet{http://mi.mathnet.ru/sjvm663}
\crossref{https://doi.org/10.15372/SJNM20170408}
\elib{https://elibrary.ru/item.asp?id=30564541}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 4
\pages 362--367
\crossref{https://doi.org/10.1134/S1995423917040085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426352400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042722470}
Linking options:
  • https://www.mathnet.ru/eng/sjvm663
  • https://www.mathnet.ru/eng/sjvm/v20/i4/p445
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :33
    References:34
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024