Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2006, Volume 12, Number 2, Pages 195–213 (Mi timm163)  

This article is cited in 6 scientific papers (total in 6 papers)

Approximation by local $L$-splines corresponding to a linear differential operator of the second order

V. T. Shevaldin
Full-text PDF (356 kB) Citations (6)
References:
Abstract: For the class of functions $W_\infty^{\mathcal L_2}=\{f:f'\in AC,\|\mathcal L_2(D)f\|_\infty\le1\}$, where $\mathcal L_2(D)$ is a linear differential operator of the second order whose characteristic polynomial has only real roots, we construct a noninterpolating linear positive method of exponential spline approximation possessing extremal and smoothing properties and locally inheriting the monotonicity of the initial data (the values of a function $f\in W_\infty^{\mathcal L_2}$ at the points of a uniform grid). The approximation error is calculated exactly for this class of functions in the uniform metric.
Received: 25.05.2006
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2006, Volume 255, Issue 2, Pages S178–S197
DOI: https://doi.org/10.1134/S0081543806060150
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: V. T. Shevaldin, “Approximation by local $L$-splines corresponding to a linear differential operator of the second order”, Control, stability, and inverse problems of dynamics, Trudy Inst. Mat. i Mekh. UrO RAN, 12, no. 2, 2006, 195–213; Proc. Steklov Inst. Math. (Suppl.), 255, suppl. 2 (2006), S178–S197
Citation in format AMSBIB
\Bibitem{She06}
\by V.~T.~Shevaldin
\paper Approximation by local $L$-splines corresponding to a~linear differential operator of the second order
\inbook Control, stability, and inverse problems of dynamics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2006
\vol 12
\issue 2
\pages 195--213
\mathnet{http://mi.mathnet.ru/timm163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338256}
\zmath{https://zbmath.org/?q=an:1137.65049}
\elib{https://elibrary.ru/item.asp?id=12040748}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2006
\vol 255
\issue , suppl. 2
\pages S178--S197
\crossref{https://doi.org/10.1134/S0081543806060150}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846965269}
Linking options:
  • https://www.mathnet.ru/eng/timm163
  • https://www.mathnet.ru/eng/timm/v12/i2/p195
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :95
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024