Abstract:
For a linear differential operator $\mathcal {L}_r$ of arbitrary order $r$ with constant coefficients and real pairwise different roots of the characteristic polynomial, we study Lebesgue constants (the norms of linear operators from $C$ to $C$) of local exponential splines corresponding to this operator with a uniform arrangement of knots; such splines were constructed by the authors in earlier papers. In particular, for the third-order operator $\mathcal {L}_3=D(D^2-\beta^2)$ ($\beta>0$), we find the exact values of Lebesgue constants for two types of local splines and compare these values with Lebesgue constants of exponential interpolation splines.
Keywords:
Lebesgue constants, exponential splines, linear differential operator.
Citation:
E. V. Strelkova, V. T. Shevaldin, “On uniform Lebesgue constants of local exponential splines with equidistant knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 4, 2015, 261–272; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 206–217
\Bibitem{StrShe15}
\by E.~V.~Strelkova, V.~T.~Shevaldin
\paper On uniform Lebesgue constants of local exponential splines with equidistant knots
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 4
\pages 261--272
\mathnet{http://mi.mathnet.ru/timm1247}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468448}
\elib{https://elibrary.ru/item.asp?id=25301003}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 206--217
\crossref{https://doi.org/10.1134/S0081543817020195}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000019}
Linking options:
https://www.mathnet.ru/eng/timm1247
https://www.mathnet.ru/eng/timm/v21/i4/p261
This publication is cited in the following 5 articles:
I. G. Burova, E. F. Muzafarova, I. I. Narbutovskikh, “Approximation by the Third-Order Splines on Uniform and Non-uniform Grids and Image Processing”, WSEAS TRANSACTIONS ON MATHEMATICS, 19 (2020), 65
I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “On the parameter-uniform convergence of exponential spline interpolation in the presence of a boundary layer”, Comput. Math. Math. Phys., 58:3 (2018), 348–363
I A Blatov, A I Zadorin, E V Kitaeva, “An application of the exponential spline for the approximation of a function and its derivatives in the presence of a boundary layer”, J. Phys.: Conf. Ser., 1050 (2018), 012012
V. T. Shevaldin, O. Ya. Shevaldina, “The Lebesgue constant of local cubic splines with equally-spaced knots”, Num. Anal. Appl., 10:4 (2017), 362–367
E. V. Strelkova, V. T. Shevaldin, “O ravnomernykh konstantakh Lebega lokalnykh trigonometricheskikh splainov tretego poryadka”, Tr. IMM UrO RAN, 22, no. 2, 2016, 245–254