Natalia V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups”, Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 267:Supl.1 (2009), S164–S183.
Natalia V. Maslova, Danila O. Revin, “Finite groups whose maximal subgroups have the Hall property”, Siberian Advances in Mathematics, 23:3 (2013), 196–209
Natalia V. Maslova, “On the coincidence of Grünberg–Kegel graphs of a finite simple group and its proper subgroup”, Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 288:Supl.1 (2015), S129–S141
N. V. Maslova, “2023 Ural workshop on group theory and combinatorics”, Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024), 284–293
2.
W. Guo, N. V. Maslova, D. O. Revin, “Nonpronormal subgroups of odd index in finite simple linear and unitary groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024), 70–79; Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S114–S122
2023
3.
N. V. Maslova, A. A. Shlepkin, “Shunkov groups saturated with almost simple groups”, Algebra Logika, 62:1 (2023), 93–101
N. V. Maslova, “Finite simple groups with two maximal subgroups of coprime orders”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1150–1159
2022
5.
M. P. Golubyatnikov, N. V. Maslova, “On a class of vertex-primitive arc-transitive amply regular graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022), 258–268
6.
N. V. Maslova, K. A. Il'enko, “On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022), 168–175; Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S130–S135
2021
7.
A. P. Khramova, N. V. Maslova, V. V. Panshin, A. M. Staroletov, “Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg–Kegel graph”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1651–1656
K. A. Ilenko, N. V. Maslova, “On the coincidence of the classes of finite groups $E_{\pi_x}$ and $D_{\pi_x}$”, Sibirsk. Mat. Zh., 62:1 (2021), 55–64; Siberian Math. J., 62:1 (2021), 44–51
9.
W. Guo, A. S. Kondrat'ev, N. V. Maslova, “Recognition of the Group $E_6(2)$ by Gruenberg-Kegel Graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021), 263–268
N. V. Maslova, “2020 Ural Workshop on Group Theory and Combinatorics”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021), 273–282
2020
11.
N. V. Maslova, I. N. Belousov, N. A. Minigulov, “Open questions formulated at the 13th School-Conference on Group Theory Dedicated to V. A. Belonogov's 85th Birthday”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020), 275–285
Guo Wen Bin, A. S. Kondrat'ev, N. V. Maslova, L. Miao, “Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020), 125–131; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S47–S51
2018
13.
I. B. Gorshkov, N. V. Maslova, “Finite almost simple groups whose Gruenberg–Kegel graphs coincide with Gruenberg–Kegel graphs of solvable groups”, Algebra Logika, 57:2 (2018), 175–196; Algebra and Logic, 57:2 (2018), 115–129
A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “On pronormal subgroups in finite simple groups”, Dokl. Akad. Nauk, 482:1 (2018), 7–11; Dokl. Math., 98:2 (2018), 405–408
N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups: addendum”, Sib. Èlektron. Mat. Izv., 15 (2018), 707–718
W. Guo, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in some extensions of finite groups”, Sibirsk. Mat. Zh., 59:4 (2018), 773–790; Siberian Math. J., 59:4 (2018), 610–622
A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in finite simple symplectic groups”, Sibirsk. Mat. Zh., 58:3 (2017), 599–610; Siberian Math. J., 58:3 (2017), 467–475
N. V. Maslova, D. O. Revin, “Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 178–187; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 148–157
S. V. Goryainov, G. S. Isakova, V. V. Kabanov, N. V. Maslova, L. V. Shalaginov, “On Deza graphs with disconnected second neighborhood of a vertex”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 50–61; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 97–107
A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “A pronormality criterion for supplements to abelian normal subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 153–158; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 145–150
N. V. Maslova, “Finite groups with arithmetic restrictions on maximal subgroups”, Algebra Logika, 54:1 (2015), 95–102; Algebra and Logic, 54:1 (2015), 65–69
A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in finite simple groups”, Sibirsk. Mat. Zh., 56:6 (2015), 1375–1383; Siberian Math. J., 56:6 (2015), 1101–1107
N. V. Maslova, “On the finite prime spectrum minimal groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 222–232; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 109–119
25.
N. V. Maslova, “Finite simple groups that are not spectrum critical”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 172–176; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 211–215
A. L. Gavrilyuk, I. V. Khramtsov, A. S. Kondrat'ev, N. V. Maslova, “On realizability of a graph as the prime graph of a finite group”, Sib. Èlektron. Mat. Izv., 11 (2014), 246–257
E. N. Demina, N. V. Maslova, “Nonabelian composition factors of a finite group with arithmetic constraints to nonsolvable maximal subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 122–134; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 64–76
N. V. Maslova, “On the coincidence of Grünberg–Kegel graphs of a finite simple group and its proper subgroup”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 156–168; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 129–141
N. V. Maslova, D. O. Revin, “On nonabelian composition factors of a finite group that is prime spectrum minimal”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013), 155–166; Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 116–127
N. V. Maslova, D. O. Revin, “Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013), 199–206; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S139–S145
N. V. Maslova, D. O. Revin, “Finite groups whose maximal subgroups have the Hall property”, Mat. Tr., 15:2 (2012), 105–126; Siberian Adv. Math., 23:3 (2013), 196–209
N. V. Maslova, “Nonabelian composition factors of a finite group whose all maximal subgroups are Hall”, Sibirsk. Mat. Zh., 53:5 (2012), 1065–1076; Siberian Math. J., 53:5 (2012), 853–861
N. V. Maslova, “Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle”, Algebra Logika, 50:2 (2011), 189–208; Algebra and Logic, 50:2 (2011), 133–145
N. V. Maslova, “Classification of maximal subgroups of odd index in finite groups with simple orthogonal socle”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010), 237–245
N. V. Maslova, “Classification of maximal subgroups of odd index in finite groups with alternating socle”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 182–184; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S136–S138
N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008), 100–118; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S164–S183