Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 3, Pages 50–61
DOI: https://doi.org/10.21538/0134-4889-2016-22-3-50-61
(Mi timm1321)
 

This article is cited in 2 scientific papers (total in 2 papers)

On Deza graphs with disconnected second neighborhood of a vertex

S. V. Goryainovab, G. S. Isakovaa, V. V. Kabanovb, N. V. Maslovabc, L. V. Shalaginova

a Chelyabinsk State University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (212 kB) Citations (2)
References:
Abstract: A graph $\Gamma$ is called a Deza graph if it is regular and the number of common neighbors of two distinct vertices is one of two values. A Deza graph $\Gamma$ is called a strictly Deza graph if it has diameter $2$ and is not strongly regular. In 1992, Gardiner, Godsil, Hensel, and Royle proved that a strongly regular graph that contains a vertex with disconnected second neighborhood is a complete multipartite graph with parts of the same size and this size is greater than or equal to $2$. In this paper we study strictly Deza graphs with disconnected second neighborhoods of vertices. In Section 2, we prove that, if each vertex of a strictly Deza graph has disconnected second neighborhood, then the graph is either edge-regular or coedge-regular. In Sections 3 and 4, we consider strictly Deza graphs that contain at least one vertex with disconnected second neighborhood. In Section 3, we show that, if such a graph is edge-regular, then it is an $s$-coclique extension of a strongly regular graph with parameters $(n,k,\lambda,\mu)$, where $s$ is integer, $s \ge 2$, and $\lambda=\mu$. In Section 4, we show that, if such a graph is coedge-regular, then it is a $2$-clique extension of a complete multipartite graph with parts of the same size greater than or equal to $3$.
Keywords: Deza graph, strictly Deza graph, disconnected second neighborhood, edge-regular graph, coedge-regular graph.
Received: 10.12.2015
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 297, Issue 1, Pages 97–107
DOI: https://doi.org/10.1134/S008154381705011X
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C40, 05C07
Language: Russian
Citation: S. V. Goryainov, G. S. Isakova, V. V. Kabanov, N. V. Maslova, L. V. Shalaginov, “On Deza graphs with disconnected second neighborhood of a vertex”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 3, 2016, 50–61; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 97–107
Citation in format AMSBIB
\Bibitem{GorIsaKab16}
\by S.~V.~Goryainov, G.~S.~Isakova, V.~V.~Kabanov, N.~V.~Maslova, L.~V.~Shalaginov
\paper On Deza graphs with disconnected second neighborhood of a vertex
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 3
\pages 50--61
\mathnet{http://mi.mathnet.ru/timm1321}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-3-50-61}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3555710}
\elib{https://elibrary.ru/item.asp?id=26530877}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 297
\issue , suppl. 1
\pages 97--107
\crossref{https://doi.org/10.1134/S008154381705011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410252500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029211180}
Linking options:
  • https://www.mathnet.ru/eng/timm1321
  • https://www.mathnet.ru/eng/timm/v22/i3/p50
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:429
    Full-text PDF :88
    References:44
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024