Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 3, Pages 599–610
DOI: https://doi.org/10.17377/smzh.2017.58.310
(Mi smj2883)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the pronormality of subgroups of odd index in finite simple symplectic groups

A. S. Kondrat'evab, N. V. Maslovaab, D. O. Revincde

a Krasovskii Institute of Mathematics and Mechanics, Ekaterinburg, Russia
b Ural Federal University, Ekaterinburg, Russia
c Sobolev Institute of Mathematics, Novosibirsk, Russia
d Novosibirsk State University, Novosibirsk, Russia
e University of Science and Technology of China, Hefei, P. R. China
References:
Abstract: A subgroup $H$ of a group $G$ is pronormal if the subgroups $H$ and $H^g$ are conjugate in $\langle H,H^g\rangle$ for every $g\in G$. It was conjectured in [1] that a subgroup of a finite simple group having odd index is always pronormal. Recently the authors [2] verified this conjecture for all finite simple groups other than $PSL_n(q)$, $PSU_n(q)$, $E_6(q)$ и $^2E_6(q)$, where in all cases $q$ is odd and $n$ is not a power of $2$, and $P\operatorname{Sp}_{2n}(q)$, where $q\equiv\pm3\pmod8$. However in [3] the authors proved that when $q\equiv\pm3\pmod8$ and $n\equiv0\pmod3$, the simple symplectic group $P\operatorname{Sp}_{2n}(q)$ has a nonpronormal subgroup of odd index, thereby refuted the conjecture on pronormality of subgroups of odd index in finite simple groups.
The natural extension of this conjecture is the problem of classifying finite nonabelian simple groups in which every subgroup of odd index is pronormal. In this paper we continue to study this problem for the simple symplectic groups $P\operatorname{Sp}_{2n}(q)$ with $q\equiv\pm3\pmod8$ (if the last condition is not satisfied, then subgroups of odd index are pronormal). We prove that whenever $n$ is not of the form $2^m$ or $2^m(2^{2k}+1)$, this group has a nonpronormal subgroup of odd index. If $n=2^m$, then we show that all subgroups of $P\operatorname{Sp}_{2n}(q)$ of odd index are pronormal. The question of pronormality of subgroups of odd index in $P\operatorname{Sp}_{2n}(q)$ is still open when $n=2^m(2^{2k}+1)$ and $q\equiv\pm3\pmod8$.
Keywords: finite group, simple group, symplectic group, pronormal subgroup, odd index.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation МК-6118.2016.1
02.A03.21.0006
Dynasty Foundation
CAS PIFI 2016VMA078
The second author was supported by the President of the Russian Federation (Grant MK-6118.2016.1), the State Maintenance Program for the Leading Universities of the Russian Federation (Agreement 02.A03.21.0006 of 27.08.2013), and the Dynasty Foundation. The third author was supported by the CAS President's International Fellowship Initiative (Grant 2016VMA078).
Received: 17.10.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 3, Pages 467–475
DOI: https://doi.org/10.1134/S0037446617030107
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 35R30
Language: Russian
Citation: A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in finite simple symplectic groups”, Sibirsk. Mat. Zh., 58:3 (2017), 599–610; Siberian Math. J., 58:3 (2017), 467–475
Citation in format AMSBIB
\Bibitem{KonMasRev17}
\by A.~S.~Kondrat'ev, N.~V.~Maslova, D.~O.~Revin
\paper On the pronormality of subgroups of odd index in finite simple symplectic groups
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 3
\pages 599--610
\mathnet{http://mi.mathnet.ru/smj2883}
\crossref{https://doi.org/10.17377/smzh.2017.58.310}
\elib{https://elibrary.ru/item.asp?id=29160452}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 3
\pages 467--475
\crossref{https://doi.org/10.1134/S0037446617030107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404212100010}
\elib{https://elibrary.ru/item.asp?id=31022970}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021277265}
Linking options:
  • https://www.mathnet.ru/eng/smj2883
  • https://www.mathnet.ru/eng/smj/v58/i3/p599
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:420
    Full-text PDF :76
    References:70
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024