Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 2, Pages 1651–1656
DOI: https://doi.org/10.33048/semi.2021.18.124
(Mi semr1466)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg–Kegel graph

A. P. Khramovaa, N. V. Maslovabcd, V. V. Panshinae, A. M. Staroletovae

a Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russia
b Krasovskii Institute of Mathematics and Mechanics UB RAS, 16, S. Kovalevskaja str., Yekaterinburg, 620108, Russia
c Ural Federal University, 19, Mira str., Yekaterinburg, 620002, Russia
d Ural Mathematical Center, 19, Mira str., Yekaterinburg, 620002, Russia
e Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
Full-text PDF (365 kB) Citations (1)
References:
Abstract: The Gruenberg–Kegel graph (or the prime graph) $\Gamma(G)$ of a finite group $G$ is defined as follows. The vertex set of $\Gamma(G)$ is the set of all prime divisors of the order of $G$. Two distinct primes $r$ and $s$ regarded as vertices are adjacent in $\Gamma(G)$ if and only if there exists an element of order $rs$ in $G$. Suppose that $L\cong E_6(3)$ or $L\cong{}^2E_6(3)$. We prove that if $G$ is a finite group such that $\Gamma(G)=\Gamma(L)$, then $G\cong L$.
Keywords: finite group, simple group, the Gruenberg–Kegel graph, exceptional group of Lie type $E_6$.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1675
The work is supported by the Mathematical Center in Akademgorodok under the agreement No. 075-15-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation.
Received October 19, 2021, published December 21, 2021
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D06
Language: English
Citation: A. P. Khramova, N. V. Maslova, V. V. Panshin, A. M. Staroletov, “Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg–Kegel graph”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1651–1656
Citation in format AMSBIB
\Bibitem{KhrMasPan21}
\by A.~P.~Khramova, N.~V.~Maslova, V.~V.~Panshin, A.~M.~Staroletov
\paper Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg--Kegel graph
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 2
\pages 1651--1656
\mathnet{http://mi.mathnet.ru/semr1466}
\crossref{https://doi.org/10.33048/semi.2021.18.124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000734395000042}
Linking options:
  • https://www.mathnet.ru/eng/semr1466
  • https://www.mathnet.ru/eng/semr/v18/i2/p1651
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :47
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024