Abstract:
A subgroup H of a group G is called pronormal if, for any element g∈G, the subgroups H and Hg are conjugate in the subgroup ⟨H,Hg⟩. We prove that, if a group G has a normal abelian subgroup V and a subgroup H such that G=HV, then H is pronormal in G if and only if U=NU(H)[H,U] for any H-invariant subgroup U of the group V. Using this fact, we prove that the simple symplectic group PSp6n(q) with q≡±3(mod8) contains a nonpronormal subgroup of odd index. Hense, we disprove the conjecture on the pronormality of subgroups of odd indices in finite simple groups, which was formulated in 2012 by E.P. Vdovin and D.O. Revin and verified by the authors in 2015 for many families of simple finite groups.
Keywords:
pronormal subgroup, complement of a subgroup, supplement of a subgroup, finite simple group, subgroup of odd index.
Citation:
A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “A pronormality criterion for supplements to abelian normal subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 153–158; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 145–150
\Bibitem{KonMasRev16}
\by A.~S.~Kondrat'ev, N.~V.~Maslova, D.~O.~Revin
\paper A pronormality criterion for supplements to abelian normal subgroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 1
\pages 153--158
\mathnet{http://mi.mathnet.ru/timm1268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3497192}
\elib{https://elibrary.ru/item.asp?id=25655605}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 145--150
\crossref{https://doi.org/10.1134/S0081543817020134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018776312}
Linking options:
https://www.mathnet.ru/eng/timm1268
https://www.mathnet.ru/eng/timm/v22/i1/p153
This publication is cited in the following 8 articles:
W. Guo, N. V. Maslova, D. O. Revin, “Nonpronormal subgroups of odd index in finite simple linear and unitary groups”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S114–S122
V. I. Zenkov, “On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$”, Proc. Steklov Inst. Math. (Suppl.), 315:1 (2021), S250–S260
Anatoly S. Kondrat'ev, Natalia V. Maslova, Danila O. Revin, “Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal”, Journal of Group Theory, 23:6 (2020), 999
Anatoly S. Kondrat'ev, Natalia Maslova, Danila Revin, Groups St Andrews 2017 in Birmingham, 2019, 406
W. Guo, D. O. Revin, “Maximal and submaximal $\mathfrak X$-subgroups”, Algebra and Logic, 57:1 (2018), 9–28
W. Guo, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in some extensions of finite groups”, Siberian Math. J., 59:4 (2018), 610–622
A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “On pronormal subgroups in finite simple groups”, Dokl. Math., 98:2 (2018), 405–408
A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in finite simple symplectic groups”, Siberian Math. J., 58:3 (2017), 467–475