Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 1, Pages 153–158 (Mi timm1268)  

This article is cited in 8 scientific papers (total in 8 papers)

A pronormality criterion for supplements to abelian normal subgroups

A. S. Kondrat'evab, N. V. Maslovaba, D. O. Revincd

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Novosibirsk State University, Mechanics and Mathematics Department
d Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (149 kB) Citations (8)
References:
Abstract: A subgroup $H$ of a group $G$ is called pronormal if, for any element $g\in G$, the subgroups $H$ and $H^g$ are conjugate in the subgroup $\langle H, H^g\rangle$. We prove that, if a group $G$ has a normal abelian subgroup $V$ and a subgroup $H$ such that $G=HV$, then $H$ is pronormal in $G$ if and only if $U=N_U(H)[H,U]$ for any $H$-invariant subgroup $U$ of the group $V$. Using this fact, we prove that the simple symplectic group $\mathrm{PSp}_{6n}(q)$ with $q\equiv\pm 3\pmod 8$ contains a nonpronormal subgroup of odd index. Hense, we disprove the conjecture on the pronormality of subgroups of odd indices in finite simple groups, which was formulated in 2012 by E.P. Vdovin and D.O. Revin and verified by the authors in 2015 for many families of simple finite groups.
Keywords: pronormal subgroup, complement of a subgroup, supplement of a subgroup, finite simple group, subgroup of odd index.
Funding agency Grant number
Russian Science Foundation 14-21-00065
Dynasty Foundation
Received: 31.12.2015
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 296, Issue 1, Pages 145–150
DOI: https://doi.org/10.1134/S0081543817020134
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “A pronormality criterion for supplements to abelian normal subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 153–158; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 145–150
Citation in format AMSBIB
\Bibitem{KonMasRev16}
\by A.~S.~Kondrat'ev, N.~V.~Maslova, D.~O.~Revin
\paper A pronormality criterion for supplements to abelian normal subgroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 1
\pages 153--158
\mathnet{http://mi.mathnet.ru/timm1268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3497192}
\elib{https://elibrary.ru/item.asp?id=25655605}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 145--150
\crossref{https://doi.org/10.1134/S0081543817020134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018776312}
Linking options:
  • https://www.mathnet.ru/eng/timm1268
  • https://www.mathnet.ru/eng/timm/v22/i1/p153
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:550
    Full-text PDF :119
    References:80
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024