Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 1, Pages 172–176 (Mi timm1153)  

This article is cited in 4 scientific papers (total in 4 papers)

Finite simple groups that are not spectrum critical

N. V. Maslovaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (137 kB) Citations (4)
References:
Abstract: Let $G$ be a finite group. The spectrum of $G$ is the set $\omega(G)$ of orders of all its elements. The subset of prime elements of $\omega(G)$ is called prime spectrum and is denoted by $\pi(G)$. A group $G$ is called spectrum critical ( prime spectrum critical) if, for any subgroups $K$ and $L$ of $G$ such that $K$ is a normal subgroup of $L$, the equality $\omega(L/K)=\omega(G)$ ($\pi(L/K)=\pi(G)$, respectively) implies that $L=G$ and $K=1$. In the present paper, we describe all finite simple groups that are not spectrum critical. In addition, we show that a prime spectrum minimal group $G$ is prime spectrum critical if and only if its Fitting subgroup $F(G)$ is a Hall subgroup of $G$.
Keywords: finite group; simple group; spectrum; prime spectrum; spectrum critical group; prime spectrum critical group.
Received: 30.07.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 292, Issue 1, Pages 211–215
DOI: https://doi.org/10.1134/S0081543816020176
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. V. Maslova, “Finite simple groups that are not spectrum critical”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 1, 2015, 172–176; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 211–215
Citation in format AMSBIB
\Bibitem{Mas15}
\by N.~V.~Maslova
\paper Finite simple groups that are not spectrum critical
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 1
\pages 172--176
\mathnet{http://mi.mathnet.ru/timm1153}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379614}
\elib{https://elibrary.ru/item.asp?id=23137985}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 292
\issue , suppl. 1
\pages 211--215
\crossref{https://doi.org/10.1134/S0081543816020176}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376272600017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971572342}
Linking options:
  • https://www.mathnet.ru/eng/timm1153
  • https://www.mathnet.ru/eng/timm/v21/i1/p172
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:417
    Full-text PDF :89
    References:82
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024