Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 89–100
DOI: https://doi.org/10.17377/semi.2016.13.007
(Mi semr658)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical logic, algebra and number theory

On the realizability of a graph as the Gruenberg–Kegel graph of a finite group

N. V. Maslovaab, D. Pagonc

a N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Science, 16, S. Kovalevskaja St, 620990, Ekaterinburg, Russia
b Ural Federal University named after the first President of Russia B. N. Yeltsin, 19, Mira St, 620002, Ekaterinburg, Russia
c University of Maribor, 160, Koroška cesta, 2000, Maribor, Slovenia
Full-text PDF (609 kB) Citations (2)
References:
Abstract: Let $G$ be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of $G$ and by $\omega (G)$ the spectrum of $G$, i.e. the set of all its element orders. The set $\omega(G)$ defines the Gruenberg–Kegel graph (or the prime graph) $\Gamma(G)$ of $G$; in this graph the vertex set is $\pi(G)$ and different vertices $p$ and $q$ are adjacent if and only if $pq\in\omega (G)$. We say that a graph $\Gamma$ with $|\pi(G)|$ vertices is realizable as the Gruenberg–Kegel graph of a group $G$ if there exists a vertices marking of $\Gamma$ by distinct primes from $\pi(G)$ such that the marked graph is equal to $\Gamma(G)$. A graph $\Gamma$ is realizable as the Gruenberg–Kegel graph of a group if $\Gamma$ is realizable as the Gruenberg–Kegel graph of an appropriate group $G$. We prove that a complete bipartite graph $K_{m,n}$ is realizable as the Gruenberg–Kegel graph of a group if and only if $m+n \le 6$ and $(m,n)\not =(3,3)$. Moreover, we describe all the groups $G$ such that the graph $K_{1,5}$ is realizable as the Gruenberg–Kegel graph of $G$.
Keywords: finite group, Gruenberg–Kegel graph (prime graph), realizability of a graph, complete bipartite graph.
Funding agency Grant number
Russian Science Foundation 14-11-00061
Dynasty Foundation
The work is supported by Russian Science Foundation (project 14-11-00061). The first author is a winner of the competition of the Dmitry Zimin Foundation «Dynasty» for support of young mathematicians in 2013 year.
Received December 1, 2015, published February 22, 2016
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20D60, 05C25, 20C20
Language: English
Citation: N. V. Maslova, D. Pagon, “On the realizability of a graph as the Gruenberg–Kegel graph of a finite group”, Sib. Èlektron. Mat. Izv., 13 (2016), 89–100
Citation in format AMSBIB
\Bibitem{MasPag16}
\by N.~V.~Maslova, D.~Pagon
\paper On the realizability of a graph as the Gruenberg--Kegel graph of a finite group
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 89--100
\mathnet{http://mi.mathnet.ru/semr658}
\crossref{https://doi.org/10.17377/semi.2016.13.007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407781100008}
Linking options:
  • https://www.mathnet.ru/eng/semr658
  • https://www.mathnet.ru/eng/semr/v13/p89
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :98
    References:95
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024