Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 4, Pages 155–166 (Mi timm1009)  

This article is cited in 5 scientific papers (total in 5 papers)

On nonabelian composition factors of a finite group that is prime spectrum minimal

N. V. Maslovaab, D. O. Revincd

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
d Novosibirsk State University
Full-text PDF (219 kB) Citations (5)
References:
Abstract: Suppose that $L$ is a finite group, $\pi(L)$ is the set of prime divisors of the order $|L|$, and $\mathfrak{Y}$ is the class of finite groups $G$ such that $\pi(G) \not = \pi(H)$ for any proper subgroup $H$ of $G$. Groups from the class $\mathfrak{Y}$ will be called prime spectrum minimal. Many but not all finite simple groups are prime spectrum minimal. For finite simple groups not from the class $\mathfrak{Y}$, the question whether they are isomorphic to nonabelian composition factors of groups from the class $\mathfrak{Y}$ is interesting. We describe some finite simple groups that are not isomorphic to nonabelian composition factors of groups from the class $\mathfrak{Y}$ and construct an example of a finite group from $\mathfrak{Y}$ that has as its composition factor a finite simple sporadic McLaughlin group $McL$ not from the class $\mathfrak{Y}$.
Keywords: finite group, prime spectrum, minimal group, maximal subgroup, composition factor.
Received: 25.03.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 287, Issue 1, Pages 116–127
DOI: https://doi.org/10.1134/S0081543814090119
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. V. Maslova, D. O. Revin, “On nonabelian composition factors of a finite group that is prime spectrum minimal”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 4, 2013, 155–166; Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 116–127
Citation in format AMSBIB
\Bibitem{MasRev13}
\by N.~V.~Maslova, D.~O.~Revin
\paper On nonabelian composition factors of a finite group that is prime spectrum minimal
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 4
\pages 155--166
\mathnet{http://mi.mathnet.ru/timm1009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364373}
\elib{https://elibrary.ru/item.asp?id=20640508}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 287
\issue , suppl. 1
\pages 116--127
\crossref{https://doi.org/10.1134/S0081543814090119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345589100011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84912049035}
Linking options:
  • https://www.mathnet.ru/eng/timm1009
  • https://www.mathnet.ru/eng/timm/v19/i4/p155
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:537
    Full-text PDF :173
    References:108
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024