Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 199–206 (Mi timm977)  

This article is cited in 5 scientific papers (total in 5 papers)

Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements

N. V. Maslovaab, D. O. Revincd

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University named B. N. Yeltsin
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
d Novosibirsk State University
Full-text PDF (166 kB) Citations (5)
References:
Abstract: For a finite group $G$, the set of all prime divisors of $|G|$ is denoted by $\pi(G)$. P. Shumyatskii introduced the following conjecture, which is included in the “Kourovka Notebook” as Question 17.125: a finite group $G$ always contains a pair of conjugate elements $a$ and $b$ such that $\pi(G)=\pi(\langle a,b\rangle)$. Denote by $\mathfrak Y$ the class of all finite groups $G$ such that $\pi(H)\ne\pi(G)$ for every maximal subgroup $H$ in $G$. Shumyatskii's conjecture is equivalent to the following conjecture: every group from $\mathfrak Y$ is generated by two conjugate elements. Let $\mathfrak V$ be the class of all finite groups in which every maximal subgroup is a Hall subgroup. It is clear that $\mathfrak V\subseteq\mathfrak Y$. We prove that every group from $\mathfrak V$ is generated by two conjugate elements. Thus, Shumyatskii's conjecture is partially supported. In addition, we study some properties of a smallest order counterexample to Shumyatskii's conjecture.
Keywords: finite group, generation by a pair of conjugate elements, Hall subgroup, maximal subgroup, prime spectrum.
Received: 12.09.2012
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 285, Issue 1, Pages S139–S145
DOI: https://doi.org/10.1134/S0081543814050150
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. V. Maslova, D. O. Revin, “Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 199–206; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S139–S145
Citation in format AMSBIB
\Bibitem{MasRev13}
\by N.~V.~Maslova, D.~O.~Revin
\paper Generation of a~finite group with Hall maximal subgroups by a~pair of conjugate elements
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 199--206
\mathnet{http://mi.mathnet.ru/timm977}
\elib{https://elibrary.ru/item.asp?id=20234986}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S139--S145
\crossref{https://doi.org/10.1134/S0081543814050150}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903291456}
Linking options:
  • https://www.mathnet.ru/eng/timm977
  • https://www.mathnet.ru/eng/timm/v19/i3/p199
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:514
    Full-text PDF :120
    References:103
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024