Abstract:
We obtain a full description of nonabelian composition factors for a finite nonsoluble group whose all maximal subgroups are Hall. Thus we solve Problem 17.92 in the “Kourovka Notebook”.
Citation:
N. V. Maslova, “Nonabelian composition factors of a finite group whose all maximal subgroups are Hall”, Sibirsk. Mat. Zh., 53:5 (2012), 1065–1076; Siberian Math. J., 53:5 (2012), 853–861
\Bibitem{Mas12}
\by N.~V.~Maslova
\paper Nonabelian composition factors of a~finite group whose all maximal subgroups are Hall
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 5
\pages 1065--1076
\mathnet{http://mi.mathnet.ru/smj2330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3057927}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 5
\pages 853--861
\crossref{https://doi.org/10.1134/S0037446612050102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310374900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868090444}
Linking options:
https://www.mathnet.ru/eng/smj2330
https://www.mathnet.ru/eng/smj/v53/i5/p1065
This publication is cited in the following 15 articles:
Z. Fan, Z. Gao, J. Zhao, B. Gao, “Finite groups in which maximal subgroups of Sylow pp-subgroups are M-permutable”, Math. Notes, 116:2 (2024), 342–349
V. A. Vedernikov, “Nonsolvable finite groups whose all nonsolvable superlocals are hall subgroups”, Siberian Math. J., 61:5 (2020), 778–794
Zhang Ch., Guo W., Maslova N.V., Revin D.O., “On Prime Spectrum of Maximal Subgroups in Finite Groups”, Algebr. Colloq., 25:4 (2018), 579–584
Irina Sokhor, “On groups with biprimary subgroups of even order”, Algebra Discrete Math., 23:2 (2017), 312–330
I. L. Sokhor, “On finite π-soluble groups with no wide subgroups”, PFMT, 2016, no. 1(26), 63–67
N. V. Maslova, D. O. Revin, “Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 148–157
Alexander N. Skiba, “On Some Results in the Theory of Finite Partially Soluble Groups”, Commun. Math. Stat., 4:3 (2016), 281
N. V. Maslova, “Finite groups with arithmetic restrictions on maximal subgroups”, Algebra and Logic, 54:1 (2015), 65–69
N. V. Maslova, “On the finite prime spectrum minimal groups”, Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 109–119
E. N. Demina, N. V. Maslova, “Nonabelian composition factors of a finite group with arithmetic constraints to nonsolvable maximal subgroups”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 64–76
V. A. Vedernikov, “Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup”, Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S191–S202
N. V. Maslova, D. O. Revin, “Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements”, Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S139–S145
N. V. Maslova, D. O. Revin, “On nonabelian composition factors of a finite group that is prime spectrum minimal”, Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 116–127
N. V. Maslova, D. O. Revin, “Finite groups whose maximal subgroups have the Hall property”, Siberian Adv. Math., 23:3 (2013), 196–209
Maslova N.V., Revin D.O., “Svoistva konechnykh grupp s khollovymi maksimalnymi podgruppami”, Matematicheskii forum (itogi nauki. yug Rossii), 6 (2012), 113–121
Properties of finite groups with hall maximal subgroups