Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 5, Pages 1065–1076 (Mi smj2330)  

This article is cited in 15 scientific papers (total in 15 papers)

Nonabelian composition factors of a finite group whose all maximal subgroups are Hall

N. V. Maslovaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University, Ekaterinburg
References:
Abstract: We obtain a full description of nonabelian composition factors for a finite nonsoluble group whose all maximal subgroups are Hall. Thus we solve Problem 17.92 in the “Kourovka Notebook”.
Keywords: finite group, nonsoluble group, maximal subgroup, Hall subgroup, nonabelian composition factor.
Received: 01.12.2011
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 5, Pages 853–861
DOI: https://doi.org/10.1134/S0037446612050102
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. V. Maslova, “Nonabelian composition factors of a finite group whose all maximal subgroups are Hall”, Sibirsk. Mat. Zh., 53:5 (2012), 1065–1076; Siberian Math. J., 53:5 (2012), 853–861
Citation in format AMSBIB
\Bibitem{Mas12}
\by N.~V.~Maslova
\paper Nonabelian composition factors of a~finite group whose all maximal subgroups are Hall
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 5
\pages 1065--1076
\mathnet{http://mi.mathnet.ru/smj2330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3057927}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 5
\pages 853--861
\crossref{https://doi.org/10.1134/S0037446612050102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310374900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868090444}
Linking options:
  • https://www.mathnet.ru/eng/smj2330
  • https://www.mathnet.ru/eng/smj/v53/i5/p1065
  • This publication is cited in the following 15 articles:
    1. Z. Fan, Z. Gao, J. Zhao, B. Gao, “Finite groups in which maximal subgroups of Sylow pp-subgroups are M-permutable”, Math. Notes, 116:2 (2024), 342–349  mathnet  mathnet  crossref
    2. V. A. Vedernikov, “Nonsolvable finite groups whose all nonsolvable superlocals are hall subgroups”, Siberian Math. J., 61:5 (2020), 778–794  mathnet  crossref  crossref  isi  elib
    3. Zhang Ch., Guo W., Maslova N.V., Revin D.O., “On Prime Spectrum of Maximal Subgroups in Finite Groups”, Algebr. Colloq., 25:4 (2018), 579–584  crossref  mathscinet  zmath  isi  scopus
    4. Irina Sokhor, “On groups with biprimary subgroups of even order”, Algebra Discrete Math., 23:2 (2017), 312–330  mathnet
    5. I. L. Sokhor, “On finite π-soluble groups with no wide subgroups”, PFMT, 2016, no. 1(26), 63–67  mathnet
    6. N. V. Maslova, D. O. Revin, “Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 148–157  mathnet  crossref  crossref  mathscinet  isi  elib
    7. Alexander N. Skiba, “On Some Results in the Theory of Finite Partially Soluble Groups”, Commun. Math. Stat., 4:3 (2016), 281  crossref
    8. N. V. Maslova, “Finite groups with arithmetic restrictions on maximal subgroups”, Algebra and Logic, 54:1 (2015), 65–69  mathnet  crossref  crossref  mathscinet  isi
    9. N. V. Maslova, “On the finite prime spectrum minimal groups”, Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 109–119  mathnet  crossref  mathscinet  isi  elib
    10. E. N. Demina, N. V. Maslova, “Nonabelian composition factors of a finite group with arithmetic constraints to nonsolvable maximal subgroups”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 64–76  mathnet  crossref  mathscinet  isi  elib
    11. V. A. Vedernikov, “Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup”, Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S191–S202  mathnet  crossref  mathscinet  isi  elib
    12. N. V. Maslova, D. O. Revin, “Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements”, Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S139–S145  mathnet  crossref  isi  elib
    13. N. V. Maslova, D. O. Revin, “On nonabelian composition factors of a finite group that is prime spectrum minimal”, Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 116–127  mathnet  crossref  mathscinet  isi  elib
    14. N. V. Maslova, D. O. Revin, “Finite groups whose maximal subgroups have the Hall property”, Siberian Adv. Math., 23:3 (2013), 196–209  mathnet  crossref  mathscinet  elib
    15. Maslova N.V., Revin D.O., “Svoistva konechnykh grupp s khollovymi maksimalnymi podgruppami”, Matematicheskii forum (itogi nauki. yug Rossii), 6 (2012), 113–121 Properties of finite groups with hall maximal subgroups  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :150
    References:119
    First page:4
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025