pattern recognition,
operations research,
signal processing.
UDC:
519.6, 519.2, 519.1, 519.7, 621.391, 519.71
Subject:
Scientific concerns:
1) Mathematical methods of pattern recognition;
2) Algorithms for noiseproof processing and recognition of numeric sequences (signals);
3) Processing, recognition and synthesizing of speech signals.
The main outcomes:
1) Effective (polynomial) a posteriori algorithms for processing (detection, distinguishing, recovery, clearing) and recognition of numeric quasiperiodic sequences; probabilistic estimations of accuracy for these algorithms and estimations of their temporary and capacitive complexity (1994–2002);
2) The Russian linguistic resource for training some systems of recognition and synthesizing of an oral speech (1997–1999);
3) Fundamentals of the theory for processing and recognition of speech signals under conditions of non-linear amplitude distortions (convertible and irreversible) (1986–1993);
4) Mathematical model for the speech signal formation under 3-grams interplay of phonemes in continuous speech (1990–1993);
5) Mathematical methods and algorithms for speech recognition system resistant to external acoustic noises, non-linear amplitude distortions of a signal, and such hindering as: vibrational distortions, overloads, and changes of a structure of a respiratory mix (1982–1989).
Biography
Education and academic degrees 1994
AFFILIATIONS Member of the Pattern Recognition Russian Association. Member of the Acoustical Society of Russia. Member of the State Institution Russian Research Scientific–Consulting Center for Expertise.
GRANTS 1993–2002 Russian Foundation for Basic Research (scientific chief of six grants).
Main publications:
A. V. Kel'manov, S. A. Khamidullin. Posterior detection of a given number of identical subsequences in a quasi-periodic sequence // Computational Mathematics and Mathematical Physics,
vol. 41, no 5, 2001, p. 762–774.
A. V. Kel'manov, L. V. Okol'nishnikova. A posteriori simultaneous detection and discrimination of subsequences in a quasiperiodic sequence // Pattern Recognition and Image Analysis, vol. 11, no. 3, 2001, p. 505–520.
A. V. Kel'manov, S. A. Khamidullin. Recognizing a quasiperiodic sequence composed of a given number of truncated subsequences // Pattern Recognition and Image Analysis, vol. 11, no. 4, 2001, p. 718–731.
A. V. Kel'manov. Probability Bounds of the Incorrect Recognition for a Quasi-Periodic Sequence of a Predefined Number of Identical Subsequences // Pattern Recognition and Image Analysis. 2000. vol. 10, no. 2, p. 195–202.
A. V. Kel'manov, S. A. Khamidullin. Recognizing a Quasiperiodic Sequence Composed of a Given Number of Identical Subsequences // Pattern Recognition and Image Analysis, 2000, vol. 10, no. 1, p. 127–142.
A. V. Kel'manov, L. V. Mikhailova, P. S. Ruzankin, S. A. Khamidullin, “Recognition of a quasi-periodic sequence containing an unknown number of nonlinearly extended reference subsequences”, Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021), 1162–1171; Comput. Math. Math. Phys., 61:7 (2021), 1153–1161
A. V. Kel'manov, L. V. Mikhailova, P. S. Ruzankin, S. A. Khamidullin, “The
minimization problem for the sum of weighted convolution differences: the case of a given
number of elements in the sum”, Sib. Zh. Vychisl. Mat., 23:2 (2020), 127–142; Num. Anal. Appl., 13:2 (2020), 103–116
A. V. Kel'manov, L. V. Mikhailova, P. S. Ruzankin, S. A. Khamidullin, “Problem of minimizing a sum of differences of weighted convolutions”, Zh. Vychisl. Mat. Mat. Fiz., 60:12 (2020), 2015–2027; Comput. Math. Math. Phys., 60:12 (2020), 1951–1963
A. V. Kel'manov, A. V. Pyatkin, V. I. Khandeev, “Complexity of some problems of quadratic partitioning of a finite set of points in Euclidean space into balanced clusters”, Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020), 151–158; Comput. Math. Math. Phys., 60:1 (2020), 163–170
2019
5.
A. V. Kel'manov, A. V. Panasenko, V. I. Khandeev, “Exact algorithms of searching for the largest size cluster in two integer 2-clustering problems”, Sib. Zh. Vychisl. Mat., 22:2 (2019), 121–136; Num. Anal. Appl., 12:2 (2019), 105–115
A. V. Kel'manov, A. V. Pyatkin, V. I. Khandeev, “Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with Constraints on the Size of the Clusters: Complexity and Approximability”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 69–78; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S117–S124
7.
A. V. Kel'manov, V. I. Khandeev, “Polynomial-time solvability of the one-dimensional case of an NP-hard clustering problem”, Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019), 1617–1625; Comput. Math. Math. Phys., 59:9 (2019), 1553–1561
A. V. Kel'manov, A. V. Panasenko, V. I. Khandeev, “Randomized algorithms for some hard-to-solve problems of clustering a finite set of points in Euclidean space”, Zh. Vychisl. Mat. Mat. Fiz., 59:5 (2019), 895–904; Comput. Math. Math. Phys., 59:5 (2019), 842–850
A. V. Kel'manov, A. V. Pyatkin, V. I. Khandeev, “On the Complexity of Some Max–Min Clustering Problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018), 189–198; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S65–S73
A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “A randomized algorithm for a sequence 2-clustering problem”, Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018), 2169–2178; Comput. Math. Math. Phys., 58:12 (2018), 2078–2085
A. V. Kel'manov, A. V. Pyatkin, “Np-hardness of some Euclidean problems of partitioning a finite set of points”, Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018), 852–856; Comput. Math. Math. Phys., 58:5 (2018), 822–826
A. V. Kel'manov, A. V. Motkova, “Polynomial-time approximation algorithm for the problem of cardinality-weighted variance-based 2-clustering with a given center”, Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018), 136–142; Comput. Math. Math. Phys., 58:1 (2018), 130–136
A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “Exact pseudopolynomial algorithm for one sequence partitioning problem”, Avtomat. i Telemekh., 2017, no. 1, 80–90; Autom. Remote Control, 78:1 (2017), 67–74
A. V. Kelmanov, S. M. Romanchenko, S. A. Khamidullin, “An approximation scheme for a problem of finding a subsequence”, Sib. Zh. Vychisl. Mat., 20:4 (2017), 379–392; Num. Anal. Appl., 10:4 (2017), 313–323
A. E. Galashov, A. V. Kel'manov, “On pseudopolynomial-time solvability of a quadratic Euclidean problem of finding a family of disjoint subsets”, Sib. Zh. Vychisl. Mat., 20:1 (2017), 15–22; Num. Anal. Appl., 10:1 (2017), 11–16
A. V. Kel'manov, A. V. Motkova, V. V. Shenmaier, “Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 159–170; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 136–145
A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, V. I. Khandeev, “Approximation algorithm for the problem of partitioning a sequence into clusters”, Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017), 1392–1400; Comput. Math. Math. Phys., 57:8 (2017), 1376–1383
A. V. Kel'manov, A. V. Motkova, “Exact pseudopolinomial algorithms for a balanced $2$-clustering problem”, Diskretn. Anal. Issled. Oper., 23:3 (2016), 21–34; J. Appl. Industr. Math., 10:3 (2016), 349–355
A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “Fully polynomial-time approximation scheme for a sequence $2$-clustering problem”, Diskretn. Anal. Issled. Oper., 23:2 (2016), 21–40; J. Appl. Industr. Math., 10:2 (2016), 209–219
A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, V. I. Khandeev, “An approximation algorithm for the problem of partitioning a sequence into clusters with constraints on their cardinalities”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 144–152; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 88–96
21.
A. V. Eremeev, A. V. Kel'manov, A. V. Pyatkin, “On the complexity and approximability of some Euclidean optimal summing problems”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1831–1836; Comput. Math. Math. Phys., 56:10 (2016), 1813–1817
22.
A. V. Kel'manov, A. V. Pyatkin, “On the complexity of some quadratic Euclidean 2-clustering problems”, Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016), 498–504; Comput. Math. Math. Phys., 56:3 (2016), 491–497
A. V. Kel'manov, V. I. Khandeev, “Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem”, Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016), 332–340; Comput. Math. Math. Phys., 56:2 (2016), 334–341
A. V. Kel'manov, V. I. Khandeev, “An exact pseudopolynomial algorithm for a bi-partitioning problem”, Diskretn. Anal. Issled. Oper., 22:4 (2015), 50–62; J. Appl. Industr. Math., 9:4 (2015), 497–502
A. V. Dolgushev, A. V. Kel'manov, V. V. Shenmaier, “Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 100–109; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 47–56
A. V. Kel'manov, S. A. Khamidullin, “An approximation polynomial-time algorithm for a sequence bi-clustering problem”, Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015), 1076–1085; Comput. Math. Math. Phys., 55:6 (2015), 1068–1076
A. V. Kel'manov, V. I. Khandeev, “A randomized algorithm for two-cluster partition of a set of vectors”, Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015), 335–344; Comput. Math. Math. Phys., 55:2 (2015), 330–339
A. E. Galashov, A. V. Kel'manov, “A $2$-approximate algorithm to solve one problem of the family of disjoint vector subsets”, Avtomat. i Telemekh., 2014, no. 4, 5–19; Autom. Remote Control, 75:4 (2014), 595–606
A. A. Ageev, A. V. Kel'manov, A. V. Pyatkin, “Complexity of the Euclidean max cut problem”, Diskretn. Anal. Issled. Oper., 21:4 (2014), 3–11; J. Appl. Industr. Math., 8:4 (2014), 453–457
A. V. Kel'manov, S. M. Romanchenko, “FPTAS for solving a problem of search for a vector subset”, Diskretn. Anal. Issled. Oper., 21:3 (2014), 41–52; J. Appl. Industr. Math., 8:3 (2014), 329–336
A. V. Kelmanov, S. A. Khamidullin, “Approximation algorithm for one problem of partitioning a sequence”, Diskretn. Anal. Issled. Oper., 21:1 (2014), 53–66; J. Appl. Industr. Math., 8:2 (2014), 236–244
E. Kh. Gimadi, A. V. Kel'manov, A. V. Pyatkin, M. Yu. Khachai, “Efficient algorithms with performance estimates for some problems of finding several cliques in a complete undirected weighted graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 99–112; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 88–101
A. V. Kelmanov, V. I. Khandeev, “A $2$-approximation polynomial algorithm for one clustering problem”, Diskretn. Anal. Issled. Oper., 20:4 (2013), 36–45; J. Appl. Industr. Math., 7:4 (2013), 515–521
A. V. Kel'manov, A. V. Pyatkin, “On the complexity of some vector sequence clustering problems”, Diskretn. Anal. Issled. Oper., 20:2 (2013), 47–57; J. Appl. Industr. Math., 7:3 (2013), 363–369
I. I. Eremin, E. Kh. Gimadi, A. V. Kel'manov, A. V. Pyatkin, M. Yu. Khachai, “$2$-approximate algorithm for finding a clique with minimum weight of vertices and edges”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013), 134–143; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 87–95
A. V. Kel'manov, L. V. Mikhailova, “Recognition of a sequence as a structure containing series of recurring vectors from an alphabet”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013), 1212–1224; Comput. Math. Math. Phys., 53:7 (2013), 1044–1055
37.
A. V. Kel'manov, S. M. Romanchenko, S. A. Khamidullin, “Точные псевдополиномиальные алгоритмы для некоторых труднорешаемых задач поиска подпоследовательности векторов”, Zh. Vychisl. Mat. Mat. Fiz., 53:1 (2013), 143–153
A. V. Kel'manov, S. M. Romanchenko, “Pseudopolynomial algorithms for certain computationally hard vector subset and cluster analysis problems”, Avtomat. i Telemekh., 2012, no. 2, 156–162; Autom. Remote Control, 73:2 (2012), 349–354
A. V. Kel'manov, S. M. Romanchenko, S. A. Khamidullin, “Approximation algorithms for some NP-hard problems of searching a vectors subsequence”, Diskretn. Anal. Issled. Oper., 19:3 (2012), 27–38; J. Appl. Industr. Math., 6:4 (2012), 443–450
A. V. Kel'manov, A. V. Pyatkin, “О сложности некоторых задач выбора подпоследовательности векторов”, Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012), 2284–2291
A. V. Dolgushev, A. V. Kel'manov, “An approximation algorithm for one problem of cluster analysis”, Diskretn. Anal. Issled. Oper., 18:2 (2011), 29–40; J. Appl. Industr. Math., 5:4 (2011), 551–558
A. V. Kel'manov, S. M. Romanchenko, “The approximation algorithm for one problem of searching for subset of vectors”, Diskretn. Anal. Issled. Oper., 18:1 (2011), 61–69; J. Appl. Industr. Math., 6:1 (2012), 90–96
A. V. Kel'manov, A. V. Pyatkin, “NP-completeness of some problems of a vectors subset choice”, Diskretn. Anal. Issled. Oper., 17:5 (2010), 37–45; J. Appl. Industr. Math., 5:3 (2011), 352–357
A. V. Dolgushev, A. V. Kel'manov, “On the issue of algorithmic complexity of one cluster analysis problem”, Diskretn. Anal. Issled. Oper., 17:2 (2010), 39–45
A. V. Kel'manov, “On the complexity of some data analysis problems”, Zh. Vychisl. Mat. Mat. Fiz., 50:11 (2010), 2045–2051; Comput. Math. Math. Phys., 50:11 (2010), 1941–1947
A. V. Kel'manov, L. V. Mikhaylova, S. A. Khamidullin, “On one problem of searching for tuples of fragments in a numerical sequence”, Diskretn. Anal. Issled. Oper., 16:4 (2009), 31–46
A. V. Kel'manov, S. A. Khamidullin, “On one recognition problem of vector alphabet generating a sequence with a quasi-periodical structure”, Sib. Zh. Vychisl. Mat., 12:3 (2009), 275–287; Num. Anal. Appl., 2:2 (2009), 220–229
A. V. Kel'manov, A. V. Pyatkin, “Complexity of certain problems of searching for subsets of vectors and cluster analysis”, Zh. Vychisl. Mat. Mat. Fiz., 49:11 (2009), 2059–2065; Comput. Math. Math. Phys., 49:11 (2009), 1966–1971
A. V. Kel'manov, A. V. Pyatkin, “On one variant of the vectors subset choice problem”, Diskretn. Anal. Issled. Oper., 15:5 (2008), 20–34; J. Appl. Industr. Math., 3:4 (2009), 447–455
A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, “Распознавание квазипериодической последовательности, включающей повторяющийся набор фрагментов”, Sib. Zh. Ind. Mat., 11:2 (2008), 74–87
53.
A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, “Optimal detection of a recurring tuple of reference fragments in a quasi-periodic sequence”, Sib. Zh. Vychisl. Mat., 11:3 (2008), 311–327; Num. Anal. Appl., 1:3 (2008), 255–268
A. V. Kel'manov, “Off-line detection of a quasi-periodically recurring fragment in a numerical sequence”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008), 81–88; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S84–S92
A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, “A posteriori joint detection of a recurring tuple of reference fragments in a quasi-periodic sequence”, Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008), 2247–2260; Comput. Math. Math. Phys., 48:12 (2008), 2276–2288
A. V. Kel'manov, L. V. Mikhailova, “A posteriori joint detection of reference fragments in a quasi-periodic sequence”, Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008), 899–915; Comput. Math. Math. Phys., 48:5 (2008), 850–865
A. V. Kel'manov, L. V. Mikhailova, “Recognition of a numerical sequence that includes series of quasiperiodically repeating standard fragments”, Sib. Zh. Ind. Mat., 10:4 (2007), 61–75
A. V. Kel'manov, S. A. Khamidullin, “Optimal detection of a given number of unknown quasiperiodic fragments in a numerical sequence”, Sib. Zh. Vychisl. Mat., 10:2 (2007), 159–175
A. V. Kel'manov, S. A. Khamidullin, “A posteriori detection of a given number of unknown quasiperiodic fragments in a numerical sequence”, Sib. Zh. Ind. Mat., 9:3 (2006), 50–65
60.
A. V. Kel'manov, S. A. Khamidullin, “Joint a posteriori detection and identification of quasiperiodic fragments in a sequence from pieces of them”, Sib. Zh. Ind. Mat., 9:2 (2006), 55–74
61.
E. Kh. Gimadi, A. V. Kel'manov, M. A. Kelmanova, S. A. Khamidullin, “A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence”, Sib. Zh. Ind. Mat., 9:1 (2006), 55–74
A. V. Kel'manov, L. V. Mikhailova, “Joint detection of a given number of reference fragments in a quasi-periodic sequence and its partition into segments containing series of identical fragments”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006), 172–189; Comput. Math. Math. Phys., 46:1 (2006), 165–181
A. V. Kel'manov, L. V. Mikhailova, “Recognition of a numerical sequence that includes series of quasiperiodic repeating standard fragments. The case of a known number of fragments”, Sib. Zh. Ind. Mat., 8:3 (2005), 69–86
A. V. Kel'manov, S. A. Khamidullin, “Joint a posteriori detection and identification of a given number of quasiperiodic fragments in a sequence from pieces of them”, Sib. Zh. Ind. Mat., 8:2 (2005), 83–102
A. V. Kel'manov, L. V. Mikhailova, “Simultaneous detection in a quasiperiodic sequence of a given number of fragments from a standard set and its partition into sections that include series of identical fragments”, Sib. Zh. Ind. Mat., 7:4 (2004), 71–91
A. V. Kel'manov, S. A. Khamidullin, “Recognition of a numerical sequence from fragments of a quasiperiodically repeating standard sequence”, Sib. Zh. Ind. Mat., 7:2 (2004), 68–87
A. V. Kel'manov, S. A. Khamidullin, “A posteriori detection of a quasiperiodically repeating fragment of a numerical sequence under conditions of noise and data loss”, Sib. Zh. Ind. Mat., 6:2 (2003), 46–63
A. V. Kel'manov, S. A. Khamidullin, L. V. Okol'nishnikova, “Recognition of a quasiperiodic sequence that includes identical subsequences-fragments”, Sib. Zh. Ind. Mat., 5:4 (2002), 38–54
A. V. Kel'manov, S. A. Khamidullin, L. V. Okol'nishnikova, “A posteriori detection of identical subsequence-fragments in a quasiperiodic sequence”, Sib. Zh. Ind. Mat., 5:2 (2002), 94–108
A. V. Kel'manov, S. A. Khamidullin, “Recognition of a quasiperiodic sequence formed from a given number of truncated subsequences”, Sib. Zh. Ind. Mat., 5:1 (2002), 85–104
A. V. Kel'manov, S. A. Khamidullin, “Posterior detection of a given number of identical subsequences in a quasi-periodic sequence”, Zh. Vychisl. Mat. Mat. Fiz., 41:5 (2001), 807–820; Comput. Math. Math. Phys., 41:5 (2001), 762–774
A. V. Kel'manov, L. V. Okol'nishnikova, “A posteriori joint detection and distinguishing of subsequences in a quasiperiodic sequence”, Sib. Zh. Ind. Mat., 3:2 (2000), 115–139
A. V. Kel'manov, S. A. Khamidullin, “A posteriori detection of a given number of truncated subsequences in a quasiperiodic sequence”, Sib. Zh. Ind. Mat., 3:1 (2000), 137–156
A. V. Kel'manov, “The recognition error probability bounds for quasi-periodic sequence formed from given number of identical subsequences”, Sib. Zh. Vychisl. Mat., 3:4 (2000), 333–344
A. V. Kel'manov, S. A. Khamidullin, “A posteriori joint detection and distinction of a given number of subsequences in a quasiperiodic sequence”, Sib. Zh. Ind. Mat., 2:2 (1999), 106–119
A. V. Kel'manov, S. A. Khamidullin, “Recognition of a quasiperiodic sequence formed from a given number of identical subsequences”, Sib. Zh. Ind. Mat., 2:1 (1999), 53–74
A. V. Kel'manov, S. A. Khamidullin, “Optimal detection of given number of identical subsequences in quasiperiodic sequence”, Sib. Zh. Vychisl. Mat., 2:4 (1999), 333–349
A. V. Kel'manov, O. A. Kutnenko, “A lower bound for the error probability of recognizing a quasiperiodic sequence of pulses that is distorted by Gaussian uncorrelated noise”, Sib. Zh. Ind. Mat., 1:2 (1998), 113–126