Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 2, Pages 134–143 (Mi timm939)  

This article is cited in 5 scientific papers (total in 6 papers)

$2$-approximate algorithm for finding a clique with minimum weight of vertices and edges

I. I. Eremina, E. Kh. Gimadib, A. V. Kel'manovb, A. V. Pyatkinb, M. Yu. Khachaiac

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Ural Federal University
Full-text PDF (182 kB) Citations (6)
References:
Abstract: The problem on a minimal clique (with respect to the total weight of its vertices and edges) of fixed size in a complete undirected weighted graph is considered along with some of its important special cases. Approximability questions are analyzed. The weak approximability of the problem is established for the general case. A $2$-approximate effective algorithm with time complexity $O(n^2)$ is proposed for cases where vertex weights are nonnegative and edge weights either satisfy the triangle inequality or are squared pairwise distances for some system of points of a Euclidean space.
Keywords: complete undirected graph, clique of fixed size, minimum weight of vertices and edges, subset search, approximability, polynomial approximation algorithm, performance guarantee, time complexity.
Received: 10.02.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 284, Issue 1, Pages 87–95
DOI: https://doi.org/10.1134/S0081543814020084
Bibliographic databases:
Document Type: Article
UDC: 519.16+519.85
Language: Russian
Citation: I. I. Eremin, E. Kh. Gimadi, A. V. Kel'manov, A. V. Pyatkin, M. Yu. Khachai, “$2$-approximate algorithm for finding a clique with minimum weight of vertices and edges”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 2, 2013, 134–143; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 87–95
Citation in format AMSBIB
\Bibitem{EreGimKel13}
\by I.~I.~Eremin, E.~Kh.~Gimadi, A.~V.~Kel'manov, A.~V.~Pyatkin, M.~Yu.~Khachai
\paper $2$-approximate algorithm for finding a~clique with minimum weight of vertices and edges
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 2
\pages 134--143
\mathnet{http://mi.mathnet.ru/timm939}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363380}
\elib{https://elibrary.ru/item.asp?id=19053975}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 284
\issue , suppl. 1
\pages 87--95
\crossref{https://doi.org/10.1134/S0081543814020084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334277400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898742572}
Linking options:
  • https://www.mathnet.ru/eng/timm939
  • https://www.mathnet.ru/eng/timm/v19/i2/p134
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :101
    References:56
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024