Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 1, Pages 172–189 (Mi zvmmf542)  

This article is cited in 23 scientific papers (total in 23 papers)

Joint detection of a given number of reference fragments in a quasi-periodic sequence and its partition into segments containing series of identical fragments

A. V. Kel'manov, L. V. Mikhailova

Sobolev Institute of Mathematics, Siberian Division, Russian Academy of Sciences, pr. Akademika Koptyuga 4, Novosibirsk, 630090, Russia
References:
Abstract: The problem of joint a posteriori detection of reference fragments in a quasi-periodic sequence and its partition into segments containing series of recurring fragments from the reference tuple is solved. It is assumed that (i) an ordered reference tuple of sequences to be detected is given, (ii) the number of desired fragments is known, (iii) the index of the sequence term corresponding to the beginning of a fragment is a deterministic (not random) value, and (iv) a sequence distorted by an additive uncorrelated Gaussian noise is available for observation. It is established that the problem consists in testing a set of hypotheses about the mean of a random Gaussian vector. The cardinality of the set grows exponentially as the vector dimension (i.e., the sequence length) increases. An efficient a posteriori algorithm producing a maximum-likelihood optimal solution to the problem is substantiated. Time and space complexity bounds related to the parameters of the problem are derived. The results of numerical simulation are presented.
Key words: numerical sequence, a posteriori noise-proof processing, quasi-periodic fragment, series, detecting, partitioning, effective algorithm.
Received: 01.06.2004
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 1, Pages 165–181
DOI: https://doi.org/10.1134/S0965542506010167
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. V. Kel'manov, L. V. Mikhailova, “Joint detection of a given number of reference fragments in a quasi-periodic sequence and its partition into segments containing series of identical fragments”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006), 172–189; Comput. Math. Math. Phys., 46:1 (2006), 165–181
Citation in format AMSBIB
\Bibitem{KelMik06}
\by A.~V.~Kel'manov, L.~V.~Mikhailova
\paper Joint detection of a~given number of reference fragments in a~quasi-periodic sequence and its partition into segments containing series of identical fragments
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 1
\pages 172--189
\mathnet{http://mi.mathnet.ru/zvmmf542}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2239735}
\zmath{https://zbmath.org/?q=an:05200895}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 1
\pages 165--181
\crossref{https://doi.org/10.1134/S0965542506010167}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746085552}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf542
  • https://www.mathnet.ru/eng/zvmmf/v46/i1/p172
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :146
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024