Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2009, Volume 12, Number 3, Pages 275–287 (Mi sjvm22)  

This article is cited in 1 scientific paper (total in 1 paper)

On one recognition problem of vector alphabet generating a sequence with a quasi-periodical structure

A. V. Kel'manov, S. A. Khamidullin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (268 kB) Citations (1)
References:
Abstract: In this paper, we analyze one version of the off-line recognition problem of the vector alphabet in the case when this alphabet is a generator of sequences having quasi-periodical vector-fragments, these fragments coinciding with alphabet vectors. It is shown that the solution of this problem is reduced to that of a special optimization problem. We have proven that this problem is solvable in a polynomial time. An algorithm for an exact solution to this problem is justified. This algorithm ensures the maximum-likelihood recognition of the vector alphabet under condition when the noise is additive and is a Gaussian sequence of independent random values having an identical distribution.
Key words: discrete optimization problem, efficient algorithm, alphabet of vectors, off-line recognition, Gaussian noise, maximum-likelihood, numerical sequence, quasiperiodical fragments.
Received: 23.10.2008
Revised: 11.01.2009
English version:
Numerical Analysis and Applications, 2009, Volume 2, Issue 2, Pages 220–229
DOI: https://doi.org/10.1134/S1995423909030033
Bibliographic databases:
UDC: 519.2+621.391
Language: Russian
Citation: A. V. Kel'manov, S. A. Khamidullin, “On one recognition problem of vector alphabet generating a sequence with a quasi-periodical structure”, Sib. Zh. Vychisl. Mat., 12:3 (2009), 275–287; Num. Anal. Appl., 2:2 (2009), 220–229
Citation in format AMSBIB
\Bibitem{KelKha09}
\by A.~V.~Kel'manov, S.~A.~Khamidullin
\paper On one recognition problem of vector alphabet generating a~sequence with a~quasi-periodical structure
\jour Sib. Zh. Vychisl. Mat.
\yr 2009
\vol 12
\issue 3
\pages 275--287
\mathnet{http://mi.mathnet.ru/sjvm22}
\transl
\jour Num. Anal. Appl.
\yr 2009
\vol 2
\issue 2
\pages 220--229
\crossref{https://doi.org/10.1134/S1995423909030033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449126920}
Linking options:
  • https://www.mathnet.ru/eng/sjvm22
  • https://www.mathnet.ru/eng/sjvm/v12/i3/p275
  • This publication is cited in the following 1 articles:
    1. Song G., “The Research on Consumer Decision Process and Problem Recognition”, Proceedings of 2016 2Nd International Conference on Humanities and Social Science Research (Ichssr 2016), Advances in Social Science Education and Humanities Research, 70, eds. Du X., Huang C., Zhong Y., Atlantis Press, 2016, 50–53  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :71
    References:49
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025