Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 2, Pages 99–112 (Mi timm1062)  

This article is cited in 3 scientific papers (total in 3 papers)

Efficient algorithms with performance estimates for some problems of finding several cliques in a complete undirected weighted graph

E. Kh. Gimadiab, A. V. Kel'manovba, A. V. Pyatkinab, M. Yu. Khachaicd

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
c B. N. Yeltsin Ural Federal University
d Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (235 kB) Citations (3)
References:
Abstract: We consider the problem of finding a fixed number of vertex-disjoint cliques of fixed sizes in a complete undirected weighted graph with respect to the criterion of minimizing the total weight of vertices and edges in the cliques. We show that the problem is NP-hard in the strong sense both in the general case and in two particular statements, which have important applications. An approximation algorithm for this problem is presented. We show that the algorithm finds a solution with guaranteed performance estimate for the considered subclasses of the problem, and the estimate is attainable in both cases. In the case when the number of cliques to be found is fixed (i.e., is not involved in the statement), the time complexity of the algorithm is polynomial.
Keywords: search for vertex-disjoint cliques, minimum total weight of vertices and edges, approximation algorithm, performance guarantee, attainable estimates, metric problem, quadratic Euclidean problem.
Received: 30.01.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 289, Issue 1, Pages 88–101
DOI: https://doi.org/10.1134/S0081543815050089
Bibliographic databases:
Document Type: Article
UDC: 519.16+519.85
Language: Russian
Citation: E. Kh. Gimadi, A. V. Kel'manov, A. V. Pyatkin, M. Yu. Khachai, “Efficient algorithms with performance estimates for some problems of finding several cliques in a complete undirected weighted graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 99–112; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 88–101
Citation in format AMSBIB
\Bibitem{GimKelPya14}
\by E.~Kh.~Gimadi, A.~V.~Kel'manov, A.~V.~Pyatkin, M.~Yu.~Khachai
\paper Efficient algorithms with performance estimates for some problems of finding several cliques in a~complete undirected weighted graph
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 99--112
\mathnet{http://mi.mathnet.ru/timm1062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364143}
\elib{https://elibrary.ru/item.asp?id=21585628}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 289
\issue , suppl. 1
\pages 88--101
\crossref{https://doi.org/10.1134/S0081543815050089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356931500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932616681}
Linking options:
  • https://www.mathnet.ru/eng/timm1062
  • https://www.mathnet.ru/eng/timm/v20/i2/p99
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :83
    References:58
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024