|
Diskretnyi Analiz i Issledovanie Operatsii, 2014, Volume 21, Issue 4, Pages 3–11
(Mi da780)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Complexity of the Euclidean max cut problem
A. A. Ageeva, A. V. Kel'manovab, A. V. Pyatkinab a S. L. Sobolev Institute of Mathematics, SB RAS, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
Abstract:
We consider the following problem: given a complete edge-weighted undirected graph whose vertices are points of a $q$-dimensional space, find a cut of maximum total weight. Two special cases are analyzed where the edge weights are equal to (i) the Euclidean distances between points representing the vertices, (ii) the squares of these distances. We prove that both cases of the problem are strongly NP-hard do no permit FPTAS unless $\mathrm{P\neq NP}$. Bibliogr. 17.
Keywords:
graph, cut, Euclidean space, NP-hard problem.
Received: 03.12.2013 Revised: 10.02.2014
Citation:
A. A. Ageev, A. V. Kel'manov, A. V. Pyatkin, “Complexity of the Euclidean max cut problem”, Diskretn. Anal. Issled. Oper., 21:4 (2014), 3–11; J. Appl. Industr. Math., 8:4 (2014), 453–457
Linking options:
https://www.mathnet.ru/eng/da780 https://www.mathnet.ru/eng/da/v21/i4/p3
|
|