Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2008, Volume 11, Number 3, Pages 311–327 (Mi sjvm50)  

This article is cited in 1 scientific paper (total in 1 paper)

Optimal detection of a recurring tuple of reference fragments in a quasi-periodic sequence

A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (337 kB) Citations (1)
References:
Abstract: The a posteriori (off-line) approach to solving the problem of maximum-likelihood detection of a recurring tuple containing reference fragments in a numerical quasi-periodic sequence is studied. The case is analyzed, where (1) the total number of fragments in a sequence is unknown; (2) the index of a sequence term corresponding to the beginning of a fragment is a deterministic (not random) value; (3) a sequence distorted by an additive uncorrelated Gaussian noise is available for observation. It is shown that the problem under consideration is reduced to testing a set of simple hypotheses about the mean of a random Gaussian vector. The cardinality of this totality exponentially grows as the vector dimension (i.e., the length of a sequence understudy) increases. It is established that the search for a maximum-likelihood hypothesis is equivalent to finding the arguments which yield a maximum for an auxiliary objective function. It is shown that maximizing this objective function is reduced to solving a special optimization problem. It is proven that this special problem is a polynomial-solvable one. The exact algorithm for solving this problem is substantiated, which underlies the algorithm for the optimal (maximum-likelihood) detection of the recurring tuple. The kernel of this algorithm is the algorithm for solution of a special (basic) optimization problem. The results of numerical simulation are presented.
Key words: quasi-periodic sequence, a posteriori processing, recurring tuple of reference fragments, noise-proof maximum-likelihood detection, discrete optimization, efficient algorithm.
Received: 17.07.2007
English version:
Numerical Analysis and Applications, 2008, Volume 1, Issue 3, Pages 255–268
DOI: https://doi.org/10.1134/S1995423908030063
UDC: 519.2+621.391
Language: Russian
Citation: A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, “Optimal detection of a recurring tuple of reference fragments in a quasi-periodic sequence”, Sib. Zh. Vychisl. Mat., 11:3 (2008), 311–327; Num. Anal. Appl., 1:3 (2008), 255–268
Citation in format AMSBIB
\Bibitem{KelMikKha08}
\by A.~V.~Kel'manov, L.~V.~Mikhailova, S.~A.~Khamidullin
\paper Optimal detection of a~recurring tuple of reference fragments in a~quasi-periodic sequence
\jour Sib. Zh. Vychisl. Mat.
\yr 2008
\vol 11
\issue 3
\pages 311--327
\mathnet{http://mi.mathnet.ru/sjvm50}
\transl
\jour Num. Anal. Appl.
\yr 2008
\vol 1
\issue 3
\pages 255--268
\crossref{https://doi.org/10.1134/S1995423908030063}
Linking options:
  • https://www.mathnet.ru/eng/sjvm50
  • https://www.mathnet.ru/eng/sjvm/v11/i3/p311
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :87
    References:45
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024