Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 4, Pages 379–392
DOI: https://doi.org/10.15372/SJNM20170403
(Mi sjvm658)
 

This article is cited in 6 scientific papers (total in 6 papers)

An approximation scheme for a problem of finding a subsequence

A. V. Kelmanovab, S. M. Romanchenkoa, S. A. Khamidullina

a Sobolev Institute of Mathematics SB RAS, 4 Acad. Koptyug av., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia
Full-text PDF (550 kB) Citations (6)
References:
Abstract: We consider a strongly NP-hard Euclidean problem of finding a subsequence in a finite sequence. The criterion of the solution is a minimum sum of squared distances from the elements of a sought subsequence to its geometric center (centroid). It is assumed that a sought subsequence contains a given number of elements. In addition, a sought subsequence should satisfy the following condition: the difference between the indices of each previous and subsequent points is bounded with given lower and upper constants. We present an approximation algorithm of solving the problem and prove that it is a fully polynomial-time approximation scheme (FPTAS) when the space dimension is bounded by a constant.
Key words: euclidean space, sequence, minimum sum of squared distances, NP-hardness, FPTAS.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00462
16-31-00186-мол-а
16-07-00168
Received: 01.09.2016
Revised: 08.01.2017
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 4, Pages 313–323
DOI: https://doi.org/10.1134/S1995423917040036
Bibliographic databases:
Document Type: Article
UDC: 519.2+621.391
Language: Russian
Citation: A. V. Kelmanov, S. M. Romanchenko, S. A. Khamidullin, “An approximation scheme for a problem of finding a subsequence”, Sib. Zh. Vychisl. Mat., 20:4 (2017), 379–392; Num. Anal. Appl., 10:4 (2017), 313–323
Citation in format AMSBIB
\Bibitem{KelRomKha17}
\by A.~V.~Kelmanov, S.~M.~Romanchenko, S.~A.~Khamidullin
\paper An approximation scheme for a~problem of finding a~subsequence
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 4
\pages 379--392
\mathnet{http://mi.mathnet.ru/sjvm658}
\crossref{https://doi.org/10.15372/SJNM20170403}
\elib{https://elibrary.ru/item.asp?id=30564536}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 4
\pages 313--323
\crossref{https://doi.org/10.1134/S1995423917040036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426352400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042695119}
Linking options:
  • https://www.mathnet.ru/eng/sjvm658
  • https://www.mathnet.ru/eng/sjvm/v20/i4/p379
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025