Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 159–170
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-159-170
(Mi timm1446)
 

This article is cited in 1 scientific paper (total in 1 paper)

Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster

A. V. Kel'manovab, A. V. Motkovab, V. V. Shenmaiera

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (221 kB) Citations (1)
References:
Abstract: We consider the intractable problem of partitioning a finite set of points in Euclidean space into two clusters with minimum sum over the clusters of weighted sums of squared distances between the elements of the clusters and their centers. The center of one cluster is unknown and is defined as the mean value of its elements (i.e., it is the centroid of the cluster). The center of the other cluster is fixed at the origin. The weight factors for the intracluster sums are given as input. We present an approximation algorithm for this problem, which is based on the adaptive grid approach to finding the center of the optimal cluster. We show that the algorithm implements a fully polynomial-time approximation scheme (FPTAS) in the case of fixed space dimension. If the dimension is not fixed but is bounded by a slowly growing function of the number of input points, the algorithm realizes a polynomial-time approximation scheme (PTAS).
Keywords: Euclidean space, partitioning, NP-hardness, FPTAS, PTAS.
Funding agency Grant number
Russian Science Foundation 16-11-10041
Received: 24.05.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages 136–145
DOI: https://doi.org/10.1134/S0081543818090146
Bibliographic databases:
Document Type: Article
UDC: 519.16+519.85
MSC: 68W25, 68Q25
Language: Russian
Citation: A. V. Kel'manov, A. V. Motkova, V. V. Shenmaier, “Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 159–170; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 136–145
Citation in format AMSBIB
\Bibitem{KelMotShe17}
\by A.~V.~Kel'manov, A.~V.~Motkova, V.~V.~Shenmaier
\paper Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 159--170
\mathnet{http://mi.mathnet.ru/timm1446}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-159-170}
\elib{https://elibrary.ru/item.asp?id=29938008}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages 136--145
\crossref{https://doi.org/10.1134/S0081543818090146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521100014}
Linking options:
  • https://www.mathnet.ru/eng/timm1446
  • https://www.mathnet.ru/eng/timm/v23/i3/p159
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :58
    References:38
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024