|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Criteria of the $C^m$ approximability of functions on compact sets in $\mathbb{R}^N$ by solutions of homogeneous elliptic equations of the second order and related capacities”, Uspekhi Mat. Nauk, 79:5(479) (2024), 101–177 |
2. |
M. Ya. Mazalov, “Capacities commensurable with harmonic ones”, Mat. Sb., 215:2 (2024), 120–146 ; Sb. Math., 215:2 (2024), 250–274 |
1
|
|
2023 |
3. |
M. Ya. Mazalov, “On $\gamma_{{\mathcal L}}$-capacities of Cantor sets”, Algebra i Analiz, 35:5 (2023), 171–182 ; St. Petersburg Math. J., 35:5 (2024), 869–877 |
1
|
4. |
M. Ya. Mazalov, “Commensurability of some capacities with harmonic capacities”, Uspekhi Mat. Nauk, 78:5(473) (2023), 183–184 ; Russian Math. Surveys, 78:5 (2023), 964–966 |
1
|
|
2022 |
5. |
A. O. Bagapsh, M. Ya. Mazalov, K. Yu. Fedorovskiy, “On the Dirichlet problem for not strongly elliptic second-order equations”, Uspekhi Mat. Nauk, 77:2(464) (2022), 197–198 ; Russian Math. Surveys, 77:2 (2022), 372–374 |
1
|
|
2021 |
6. |
M. Ya. Mazalov, “Approximation by polyanalytic functions in Hölder spaces”, Algebra i Analiz, 33:5 (2021), 125–152 ; St. Petersburg Math. J., 33:5 (2022), 829–848 |
7. |
M. Ya. Mazalov, “Uniform approximation of functions
by solutions of second order homogeneous strongly elliptic equations on compact sets in ${\mathbb{R}}^2$”, Izv. RAN. Ser. Mat., 85:3 (2021), 89–126 ; Izv. Math., 85:3 (2021), 421–456 |
4
|
|
2020 |
8. |
M. Ya. Mazalov, “A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients”, Mat. Sb., 211:9 (2020), 60–104 ; Sb. Math., 211:9 (2020), 1267–1309 |
8
|
|
2018 |
9. |
M. Ya. Mazalov, “On Bianalytic Capacities”, Mat. Zametki, 103:4 (2018), 635–640 ; Math. Notes, 103:4 (2018), 672–677 |
1
|
|
2017 |
10. |
M. Ya. Mazalov, “On Nevanlinna domains with fractal boundaries”, Algebra i Analiz, 29:5 (2017), 90–110 ; St. Petersburg Math. J., 29:5 (2018), 777–791 |
6
|
11. |
M. Ya. Mazalov, “On the existence of angular boundary values for polyharmonic functions in the unit ball”, Zap. Nauchn. Sem. POMI, 456 (2017), 144–154 ; J. Math. Sci. (N. Y.), 234:3 (2018), 362–368 |
1
|
|
2015 |
12. |
M. Ya. Mazalov, “An example of a non-rectifiable Nevanlinna contour”, Algebra i Analiz, 27:4 (2015), 50–58 ; St. Petersburg Math. J., 27:4 (2016), 625–630 |
9
|
13. |
M. Ya. Mazalov, P. V. Paramonov, “Criteria for $C^m$-approximability by bianalytic functions on planar compact sets”, Mat. Sb., 206:2 (2015), 77–118 ; Sb. Math., 206:2 (2015), 242–281 |
6
|
|
2012 |
14. |
M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Uspekhi Mat. Nauk, 67:6(408) (2012), 53–100 ; Russian Math. Surveys, 67:6 (2012), 1023–1068 |
34
|
15. |
M. Ya. Mazalov, “Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$”, Trudy Mat. Inst. Steklova, 279 (2012), 120–165 ; Proc. Steklov Inst. Math., 279 (2012), 110–154 |
6
|
16. |
M. Ya. Mazalov, “On uniform approximability by solutions of elliptic equations of order higher than two”, Ufimsk. Mat. Zh., 4:4 (2012), 108–118 |
17. |
M. Ya. Mazalov, “A criterion for approximability by harmonic functions in Lipschitz spaces”, Zap. Nauchn. Sem. POMI, 401 (2012), 144–171 ; J. Math. Sci. (N. Y.), 194:6 (2013), 678–692 |
4
|
|
2011 |
18. |
M. Ya. Mazalov, “Uniform approximation problem for harmonic functions”, Algebra i Analiz, 23:4 (2011), 136–178 ; St. Petersburg Math. J., 23:4 (2012), 731–759 |
6
|
19. |
M. Ya. Mazalov, “Uniform approximation by harmonic functions on compact subsets of $\mathbb R^3$”, Zap. Nauchn. Sem. POMI, 389 (2011), 162–190 ; J. Math. Sci. (N. Y.), 182:5 (2012), 674–689 |
1
|
|
2009 |
20. |
M. Ya. Mazalov, “The Dirichlet problem for polyanalytic functions”, Mat. Sb., 200:10 (2009), 59–80 ; Sb. Math., 200:10 (2009), 1473–1493 |
12
|
|
2008 |
21. |
M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Mat. Sb., 199:1 (2008), 15–46 ; Sb. Math., 199:1 (2008), 13–44 |
26
|
|
2004 |
22. |
M. Ya. Mazalov, “Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$”, Mat. Sb., 195:5 (2004), 79–102 ; Sb. Math., 195:5 (2004), 687–709 |
24
|
|
2001 |
23. |
M. Ya. Mazalov, “Uniform Approximation of Functions Continuous on a Compact Subset of $\mathbb C$ and Analytic in Its Interior by Functions Bianalytic in Its Neighborhoods”, Mat. Zametki, 69:2 (2001), 245–261 ; Math. Notes, 69:2 (2001), 216–231 |
6
|
|
1997 |
24. |
M. Ya. Mazalov, “An example of a nonconstant bianalytic function vanishing everywhere on a nowhere analytic boundary”, Mat. Zametki, 62:4 (1997), 629–632 ; Math. Notes, 62:4 (1997), 524–526 |
14
|
|
Presentations in Math-Net.Ru |
1. |
О емкостях, соизмеримых с гармоническими M. Ya. Mazalov
November 8, 2022 16:10
|
2. |
Проблема соизмеримости некоторых емкостей с гармоническими M. Ya. Mazalov
October 27, 2022 15:50
|
3. |
Bianalytic functions of Hölder classes in Jordan domains with nonanalytic boundaries M. Ya. Mazalov
Analysis days in Sirius October 26, 2021 15:00
|
4. |
Uniform approximation by harmonic and bianalytic functions M. Ya. Mazalov
International Conference on Complex Analysis Dedicated to the Memory of Andrei Gonchar and Anatoliy Vitushkin October 12, 2021 16:15
|
5. |
Approximation by solutions of elliptic equations: Paramonov's ideas and their development M. Ya. Mazalov
Seminar "Complex analysis in several variables" (Vitushkin Seminar) October 18, 2017 16:45
|
6. |
Пример неспрямляемого неванлинновского контура M. Ya. Mazalov
Seminar on Operator Theory and Function Theory December 15, 2014 17:30
|
7. |
An example of a non-rectifiable Nevanlinna contour M. Ya. Mazalov
Seminar on Complex Analysis (Gonchar Seminar) October 20, 2014 19:15
|
8. |
Some conditions of approximation of functions by solutions of elliptic equations M. Ya. Mazalov
Seminar on Complex Analysis (Gonchar Seminar) May 13, 2013 18:00
|
9. |
Индивидуальная теорема о равномерном приближении гармоническими функциями M. Ya. Mazalov
Seminar on Operator Theory and Function Theory February 28, 2011 17:30
|
|
|
Organisations |
|
|
|
|