Abstract:
We prove that an arbitrary function continuous on a compact set X⊂C and holomorphic in the interior of X can be approximated by functions bianalytic in neighborhoods of X with arbitrary accuracy.
Citation:
M. Ya. Mazalov, “Uniform Approximation of Functions Continuous on a Compact Subset of C and Analytic in Its Interior by Functions Bianalytic in Its Neighborhoods”, Mat. Zametki, 69:2 (2001), 245–261; Math. Notes, 69:2 (2001), 216–231
\Bibitem{Maz01}
\by M.~Ya.~Mazalov
\paper Uniform Approximation of Functions Continuous on a Compact Subset of $\mathbb C$ and Analytic in Its Interior by Functions Bianalytic in Its Neighborhoods
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 2
\pages 245--261
\mathnet{http://mi.mathnet.ru/mzm500}
\crossref{https://doi.org/10.4213/mzm500}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1830224}
\zmath{https://zbmath.org/?q=an:1005.30026}
\elib{https://elibrary.ru/item.asp?id=13361641}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 2
\pages 216--231
\crossref{https://doi.org/10.1023/A:1002876419788}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168619500023}
Linking options:
https://www.mathnet.ru/eng/mzm500
https://doi.org/10.4213/mzm500
https://www.mathnet.ru/eng/mzm/v69/i2/p245
This publication is cited in the following 6 articles:
Sorin G. Gal, Irene Sabadini, “Density of Complex and Quaternionic Polyanalytic Polynomials in Polyanalytic Fock Spaces”, Complex Anal. Oper. Theory, 18:1 (2024)
Gal S.G. Sabadini I., “Approximation By Convolution Polyanalytic Operators in the Complex and Quaternionic Compact Unit Balls”, Comput. Methods Funct. Theory, 2022
Zoubeir H., Kabbaj S., “On the Representation and the Uniform Polynomial Approximation of Polyanalytic Functions of Gevrey Type on the Unit Disk”, Iran. J. Math. Sci. Inform., 16:2 (2021), 89–115
M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1 (2008), 13–44
M. Ya. Mazalov, “Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$”, Sb. Math., 195:5 (2004), 687–709
K. Yu. Fedorovskiy, “Approximation and Boundary Properties of Polyanalytic Functions”, Proc. Steklov Inst. Math., 235 (2001), 251–260