Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 1, Pages 13–44
DOI: https://doi.org/10.1070/SM2008v199n01ABEH003909
(Mi sm3884)
 

This article is cited in 26 scientific papers (total in 26 papers)

A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations

M. Ya. Mazalov

Military Academy of Air Defence Forces of Russia Federation named after A. M. Vasilevskii
References:
Abstract: Let $X$ be an arbitrary compact subset of the plane. It is proved that if $L$ is a homogeneous elliptic operator with constant coefficients and locally bounded fundamental solution, then each function $f$ that is continuous on $X$ and satisfies the equation $Lf=0$ at all interior points of $X$ can be uniformly approximated on $X$ by solutions of the same equation having singularities outside $X$. A theorem on uniform piecemeal approximation of a function is also established under weaker constraints than in the standard Vitushkin scheme.
Bibliography: 24 titles.
Received: 22.05.2007
Bibliographic databases:
UDC: 517.538.5+517.956.2
MSC: Primary 41A30; Secondary 30E10, 35J99
Language: English
Original paper language: Russian
Citation: M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1 (2008), 13–44
Citation in format AMSBIB
\Bibitem{Maz08}
\by M.~Ya.~Mazalov
\paper A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations
\jour Sb. Math.
\yr 2008
\vol 199
\issue 1
\pages 13--44
\mathnet{http://mi.mathnet.ru//eng/sm3884}
\crossref{https://doi.org/10.1070/SM2008v199n01ABEH003909}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2410145}
\zmath{https://zbmath.org/?q=an:1171.41008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255696300002}
\elib{https://elibrary.ru/item.asp?id=20359280}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44449119529}
Linking options:
  • https://www.mathnet.ru/eng/sm3884
  • https://doi.org/10.1070/SM2008v199n01ABEH003909
  • https://www.mathnet.ru/eng/sm/v199/i1/p15
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:636
    Russian version PDF:263
    English version PDF:21
    References:67
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024