Abstract:
Let ${\mathcal L}$ be a homogeneous elliptic second-order differential operator in $\mathbb{R}^d$, $d\ge3$, with constant complex coefficients. In terms of capacities $\gamma_{{\mathcal L}}$, removable singularities of ${\rm L}^{\infty}$-bounded solutions of the equations ${\mathcal L}f=0$ are described. For Cantor sets in $\mathbb{R}^d$ we prove comparability of $\gamma_{{\mathcal L}}$ with classical harmonic capacities of the potential theory for all ${\mathcal L}$ and corresponding $d$.
Keywords:
homogeneous complex coefficients elliptic equations, capacity, energy, Cantor sets.
Citation:
M. Ya. Mazalov, “On $\gamma_{{\mathcal L}}$-capacities of Cantor sets”, Algebra i Analiz, 35:5 (2023), 171–182; St. Petersburg Math. J., 35:5 (2024), 869–877
\Bibitem{Maz23}
\by M.~Ya.~Mazalov
\paper On $\gamma_{{\mathcal L}}$-capacities of Cantor sets
\jour Algebra i Analiz
\yr 2023
\vol 35
\issue 5
\pages 171--182
\mathnet{http://mi.mathnet.ru/aa1887}
\transl
\jour St. Petersburg Math. J.
\yr 2024
\vol 35
\issue 5
\pages 869--877
\crossref{https://doi.org/10.1090/spmj/1833}
Linking options:
https://www.mathnet.ru/eng/aa1887
https://www.mathnet.ru/eng/aa/v35/i5/p171
This publication is cited in the following 1 articles:
M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Criteria for $C^m$-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of $\mathbb{R}^N$ and related capacities”, Russian Math. Surveys, 79:5 (2024), 847–917