Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 9, Pages 1267–1309
DOI: https://doi.org/10.1070/SM9288
(Mi sm9288)
 

This article is cited in 8 scientific papers (total in 8 papers)

A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients

M. Ya. Mazalovab

a National Research University "Moscow Power Engineering Institute", Smolensk, Russia
b Saint Petersburg State University, St. Petersburg, Russia
References:
Abstract: A natural counterpart of Vitushkin's criterion is obtained in the problem of uniform approximation of functions by solutions of second-order homogeneous elliptic equations with constant complex coefficient on compact subsets of $\mathbb R^d$, $d\geqslant3$. It is stated in terms of a single (scalar) capacity connected with the leading coefficient of the Laurent series. The scheme of approximation uses methods in the theory of singular integrals and, in particular, constructions of certain special Lipschitz surfaces and Carleson measures.
Bibliography: 23 titles.
Keywords: uniform approximation, capacities, singular integrals, Carleson measures, Vitushkin's scheme.
Funding agency Grant number
Russian Science Foundation 17-11-01064
This work was supported by the Russian Science Foundation under grant no. 17-11-01064.
Received: 06.06.2019 and 05.06.2020
Bibliographic databases:
Document Type: Article
UDC: 517.518.8+517.956.2
MSC: Primary 35A35, 35J15, 41A30; Secondary 30E10, 41A20
Language: English
Original paper language: Russian
Citation: M. Ya. Mazalov, “A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients”, Sb. Math., 211:9 (2020), 1267–1309
Citation in format AMSBIB
\Bibitem{Maz20}
\by M.~Ya.~Mazalov
\paper A~criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients
\jour Sb. Math.
\yr 2020
\vol 211
\issue 9
\pages 1267--1309
\mathnet{http://mi.mathnet.ru//eng/sm9288}
\crossref{https://doi.org/10.1070/SM9288}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045698}
\zmath{https://zbmath.org/?q=an:1458.35017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1267M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000593505900001}
\elib{https://elibrary.ru/item.asp?id=45132301}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097232574}
Linking options:
  • https://www.mathnet.ru/eng/sm9288
  • https://doi.org/10.1070/SM9288
  • https://www.mathnet.ru/eng/sm/v211/i9/p60
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:354
    Russian version PDF:49
    English version PDF:27
    References:40
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024