Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 279, Pages 120–165 (Mi tm3423)  

This article is cited in 6 scientific papers (total in 6 papers)

Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$

M. Ya. Mazalov

Smolensk Branch of the Moscow Power Engineering Institute, Smolensk, Russia
Full-text PDF (477 kB) Citations (6)
References:
Abstract: For a function continuous on a compact set $X\subset\mathbb R^3$ and harmonic inside $X$, we obtain a criterion of uniform approximability by functions harmonic in a neighborhood of $X$ in terms of the classical harmonic capacity. The proof is based on an improved localization scheme of A. G. Vitushkin, on a special geometric construction, and on the methods of the theory of singular integrals.
Received in December 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 279, Pages 110–154
DOI: https://doi.org/10.1134/S008154381208010X
Bibliographic databases:
Document Type: Article
UDC: 517.518.8+517.956.2
Language: Russian
Citation: M. Ya. Mazalov, “Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$”, Analytic and geometric issues of complex analysis, Collected papers, Trudy Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 120–165; Proc. Steklov Inst. Math., 279 (2012), 110–154
Citation in format AMSBIB
\Bibitem{Maz12}
\by M.~Ya.~Mazalov
\paper Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 279
\pages 120--165
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3423}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3086762}
\elib{https://elibrary.ru/item.asp?id=18447445}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 279
\pages 110--154
\crossref{https://doi.org/10.1134/S008154381208010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314063000010}
Linking options:
  • https://www.mathnet.ru/eng/tm3423
  • https://www.mathnet.ru/eng/tm/v279/p120
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:408
    Full-text PDF :96
    References:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024